• Title/Summary/Keyword: enhancer RNA

Search Result 148, Processing Time 0.02 seconds

Transcriptional Regulation of Genes by Enhancer RNAs (인핸서 RNA에 의한 유전자 전사 조절)

  • Kim, Yea Woon;Kim, AeRi
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.140-145
    • /
    • 2016
  • Genes in multicellular organisms are transcribed in development, differentiation, or tissue-specific manners. The transcription of genes is activated by enhancers, which are transcription regulatory elements located at long distances from the genes. Recent studies have reported that noncoding RNAs are transcribed from active enhancers by RNA polymerase II (RNA Pol II); these are called enhancer RNAs (eRNAs). eRNAs are transcribed bi-directionally from the enhancer core, and are capped on the 5’ end but not spliced or polyadenylated on the 3’ end. The transcription of eRNAs requires the binding of transcription activators on the enhancer and associates positively with the transcription of the target gene. The transcriptional inhibition of eRNAs or the removal of eRNA transcripts results in the transcriptional repression of the coding gene. The transcriptional procedure of eRNAs causes enhancer- specific histone modifications, such as histone H3K4me1/2. eRNA transcripts directly interact with Mediator and Rad21, a cohesin subunit, generating a chromatin loop structure between the enhancer and the promoter of the target gene. The recruitment of RNA Pol II into the promoter and its elongation through the coding region are facilitated by eRNAs. Here, we will review the features of eRNAs, and discuss the mechanism of eRNA transcription and the roles of eRNAs in the transcriptional activation of target genes.

Epigenetic regulation of key gene of PCK1 by enhancer and super-enhancer in the pathogenesis of fatty liver hemorrhagic syndrome

  • Yi Wang;Shuwen Chen;Min Xue;Jinhu Ma;Xinrui Yi;Xinyu Li;Xuejin Lu;Meizi Zhu;Jin Peng;Yunshu Tang;Yaling Zhu
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1317-1332
    • /
    • 2024
  • Objective: Rare study of the non-coding and regulatory regions of the genome limits our ability to decode the mechanisms of fatty liver hemorrhage syndrome (FLHS) in chickens. Methods: Herein, we constructed the high-fat diet-induced FLHS chicken model to investigate the genome-wide active enhancers and transcriptome by H3K27ac target chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-Seq) profiles of normal and FLHS liver tissues. Concurrently, an integrative analysis combining ChIP-seq with RNA-Seq and a comparative analysis with chicken FLHS, rat non-alcoholic fatty liver disease (NAFLD) and human NAFLD at the transcriptome level revealed the enhancer and super enhancer target genes and conservative genes involved in metabolic processes. Results: In total, 56 and 199 peak-genes were identified in upregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥0.5 and log2(FoldChange) ≥1) (PP) and downregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥0.5 and log2(FoldChange)≤-1) (PN), respectively; then we screened key regulatory targets mainly distributing in lipid metabolism (PCK1, APOA4, APOA1, INHBE) and apoptosis (KIT, NTRK2) together with MAPK and PPAR signaling pathway in FLHS. Intriguingly, PCK1 was also significantly covered in up-regulated super-enhancers (SEs), which further implied the vital role of PCK1 during the development of FLHS. Conclusion: Together, our studies have identified potential therapeutic biomarkers of PCK1 and elucidated novel insights into the pathogenesis of FLHS, especially for the epigenetic perspective.

Functional Enhancers As Master Regulators of Tissue-Specific Gene Regulation and Cancer Development

  • Ko, Je Yeong;Oh, Sumin;Yoo, Kyung Hyun
    • Molecules and Cells
    • /
    • v.40 no.3
    • /
    • pp.169-177
    • /
    • 2017
  • Tissue-specific transcription is critical for normal development, and abnormalities causing undesirable gene expression may lead to diseases such as cancer. Such highly organized transcription is controlled by enhancers with specific DNA sequences recognized by transcription factors. Enhancers are associated with chromatin modifications that are distinct epigenetic features in a tissue-specific manner. Recently, super-enhancers comprising enhancer clusters co-occupied by lineage-specific factors have been identified in diverse cell types such as adipocytes, hair follicle stem cells, and mammary epithelial cells. In addition, noncoding RNAs, named eRNAs, are synthesized at super-enhancer regions before their target genes are transcribed. Many functional studies revealed that super-enhancers and eRNAs are essential for the regulation of tissue-specific gene expression. In this review, we summarize recent findings concerning enhancer function in tissue-specific gene regulation and cancer development.

Enhancer Function of MicroRNA-3681 Derived from Long Terminal Repeats Represses the Activity of Variable Number Tandem Repeats in the 3' UTR of SHISA7

  • Lee, Hee-Eun;Park, Sang-Je;Huh, Jae-Won;Imai, Hiroo;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • v.43 no.7
    • /
    • pp.607-618
    • /
    • 2020
  • microRNAs (miRNAs) are non-coding RNA molecules involved in the regulation of gene expression. miRNAs inhibit gene expression by binding to the 3' untranslated region (UTR) of their target gene. miRNAs can originate from transposable elements (TEs), which comprise approximately half of the eukaryotic genome and one type of TE, called the long terminal repeat (LTR) is found in class of retrotransposons. Amongst the miRNAs derived from LTR, hsa-miR-3681 was chosen and analyzed using bioinformatics tools and experimental analysis. Studies on hsa-miR-3681 have been scarce and this study provides the relative expression analysis of hsa-miR-3681-5p from humans, chimpanzees, crab-eating monkeys, and mice. Luciferase assay for hsa-miR-3681-5p and its target gene SHISA7 supports our hypothesis that the number of miRNA binding sites affects target gene expression. Especially, the variable number tandem repeat (VNTR) and hsa-miR-3681-5p share the binding sites in the 3' UTR of SHISA7, which leads the enhancer function of hsamiR-3681-5p to inhibit the activity of VNTR. In conclusion, hsa-miR-3681-5p acts as a super-enhancer and the enhancer function of hsa-miR-3681-5p acts as a repressor of VNTR activity in the 3' UTR of SHISA7.

Molecular Cloning and mRNA Expression of the Hanwoo CAT/enhancer-binding Protein α(C/EBPα) Gene (한우 CCAAT/enhancer-binding protein α(C/EBPα) 유전자의 동정과 mRNA의 발현)

  • Jeoung, Y.H.;Lee, S.M.;Park, H.Y.;Yoon, D.H.;Moon, S.J.;Chung, E.R.;Kang, M.J.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.909-916
    • /
    • 2004
  • CCAAT/enhancer binding proteins(C/EBP) are a group of transcription factors expressed during preadipocyte differentiation. In the C/EBPs, C/EBPa plays an important role in lipid deposition and adipocyte differentiation. In this studies, we report the identification, characterization, and expression of a Hanwoo CIEBP$\alpha$ The Hanwoo C/EBP$\alpha$DNA includes a 1059 bp open reading frame encoding a protein of 353 amino acids. The CIEBPa amino acid sequences of the Hanwoo show strong conservation with the corresponding sequences reported in other species. The distribution of C/EBP$\alpha$ mRNA in various tissues of Hanwoo aged 12 months were investigated using Northern blotting analysis. The highest expression was detected in adipose tissue and more lower expression was detected in colon and lung. We also identified expression of C/EBPa mRNA in Hanwoo sirloin and adipose tissue aged 12, 26, and 30 months by real-time RT-PCR. The higest expression were detected at 26 months in the sirloin and at 12 and 26 months in the adipose tissue.

TLE-1 mRNA Expression during In Vivo and In Vitro Maturation in Porcine Oocytes (돼지 난자의 체내 및 체외 성숙시 Transducin-like Enhancer Protein 1(TLE-1) mRNA의 발현)

  • Jang, Ye-Jin;Kim, Dong-Woo;Lee, Yong-Seung;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.99-103
    • /
    • 2011
  • Transducin-like enhancer protein 1(TLE-1) is protein associated with cell proliferation. This study analyzed change of TLE-1 mRNA expression during in vivo and in vitro maturation in porcine oocytes. Oocytes and granulose cells were collected from follicles of <2 mm, 2~6 mm and >6 mm in diameter in slaughtered pig's ovaries. Oocytes collected from follicles of 2~6 mm in diameter were used after in vitro maturation for 0, 10, 20 and 44 h. Cumulus cells and granulose cells were collected after treatment with hyaluronidase. In results, TLE-1 mRNA expression in oocytes collected from follicle >6 mm in diameter is increased, TLE-1 RNA expression in cumulus cells and granulosa cells from follicles <2 mm, 2 mm 6 mm and >6 mm in diameter. However, there is no significant difference. On the other hand, TLE-1 mRNA expression from oocytes cultured for 10 hand 44 h is increased, TLE-1 mRNA in cumulus cells cultured for 10 h is significant increased(p<0.05) than other culture periods. In conclusion, these results show that TLE-1 is expressed in all cell types of oocytes, cumulus cells and granulose cells, and associated with oocyte maturation.

Identification and Functional Characterization of Two Noncoding RNAs Transcribed from Putative Active Enhancers in Hepatocellular Carcinoma

  • Lee, Ye-Eun;Lee, Jiyeon;Lee, Yong Sun;Jang, Jiyoung Joan;Woo, Hyeonju;Choi, Hae In;Chai, Young Gyu;Kim, Tae-Kyung;Kim, TaeSoo;Kim, Lark Kyun;Choi, Sun Shim
    • Molecules and Cells
    • /
    • v.44 no.9
    • /
    • pp.658-669
    • /
    • 2021
  • Enhancers have been conventionally perceived as cis-acting elements that provide binding sites for trans-acting factors. However, recent studies have shown that enhancers are transcribed and that these transcripts, called enhancer RNAs (eRNAs), have a regulatory function. Here, we identified putative eRNAs by profiling and determining the overlap between noncoding RNA expression loci and eRNA-associated histone marks such as H3K27ac and H3K4me1 in hepatocellular carcinoma (HCC) cell lines. Of the 132 HCC-derived noncoding RNAs, 74 overlapped with the eRNA loci defined by the FANTOM consortium, and 65 were located in the proximal regions of genes differentially expressed between normal and tumor tissues in TCGA dataset. Interestingly, knockdown of two selected putative eRNAs, THUMPD3-AS1 and LINC01572, led to downregulation of their target mRNAs and to a reduction in the proliferation and migration of HCC cells. Additionally, the expression of these two noncoding RNAs and target mRNAs was elevated in tumor samples in the TCGA dataset, and high expression was associated with poor survival of patients. Collectively, our study suggests that noncoding RNAs such as THUMPD3-AS1 and LINC01572 (i.e., putative eRNAs) can promote the transcription of genes involved in cell proliferation and differentiation and that the dysregulation of these noncoding RNAs can cause cancers such as HCC.

Effects of different target sites on antisense RNA-mediated regulation of gene expression

  • Park, Hongmarn;Yoon, Yeongseong;Suk, Shinae;Lee, Ji Young;Lee, Younghoon
    • BMB Reports
    • /
    • v.47 no.11
    • /
    • pp.619-624
    • /
    • 2014
  • Antisense RNA is a type of noncoding RNA (ncRNA) that binds to complementary mRNA sequences and induces gene repression by inhibiting translation or degrading mRNA. Recently, several small ncRNAs (sRNAs) have been identified in Escherichia coli that act as antisense RNA mainly via base pairing with mRNA. The base pairing predominantly leads to gene repression, and in some cases, gene activation. In the current study, we examined how the location of target sites affects sRNA-mediated gene regulation. An efficient antisense RNA expression system was developed, and the effects of antisense RNAs on various target sites in a model mRNA were examined. The target sites of antisense RNAs suppressing gene expression were identified, not only in the translation initiation region (TIR) of mRNA, but also at the junction between the coding region and 3' untranslated region. Surprisingly, an antisense RNA recognizing the upstream region of TIR enhanced gene expression through increasing mRNA stability.

A Korean case of neurofibromatosis type 1 with an exonic splicing enhancer site mutation

  • Park, Sangwook;Sohn, Young Bae;Chung, In-Soon;Hong, Ji-Hee;Jung, Eun-Jung;Jeong, Seon-Yong;Jin, Hyun-Seok
    • Journal of Genetic Medicine
    • /
    • v.11 no.1
    • /
    • pp.40-42
    • /
    • 2014
  • Neurofibromatosis type 1 (NF1) is an autosomal dominant disease characterized by neurological, cutaneous, and ophthalmological manifestations. A 33-year-old woman with typical symptoms of NF1 visited Ajou University Hospital. Screening of the whole-messenger RNA region of NF1 at the complementary DNA level by polymerase chain reaction-direct sequencing confirmed the presence of an NF1 mutation at the genomic level. The mutation analysis revealed an in-frame skipping of exon 46 (c.6757_6858del) caused by a point mutation (c. 6792C>A) in exon 46. In this report, we have described the first Korean case of a proband with NF1 that carries an allele with an exon 46 deletion caused by an exonic splicing enhancer site mutation, leading to the skipping of the whole of exon 46 (c.6757_6858del).

Gossypol Induces Apoptosis of Human Pancreatic Cancer Cells via CHOP/Endoplasmic Reticulum Stress Signaling Pathway

  • Lee, Soon;Hong, Eunmi;Jo, Eunbi;Kim, Z-Hun;Yim, Kyung June;Woo, Sung Hwan;Choi, Yong-Soo;Jang, Hyun-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.645-656
    • /
    • 2022
  • Gossypol, a natural phenolic aldehyde present in cotton plants, was originally used as a means of contraception, but is currently being studied for its anti-proliferative and anti-metastatic effects on various cancers. However, the intracellular mechanism of action regarding the effects of gossypol on pancreatic cancer cells remains unclear. Here, we investigated the anti-cancer effects of gossypol on human pancreatic cancer cells (BxPC-3 and MIA PaCa-2). Cell counting kit-8 assays, annexin V/propidium iodide staining assays, and transmission electron microscopy showed that gossypol induced apoptotic cell death and apoptotic body formation in both cell lines. RNA sequencing analysis also showed that gossypol increased the mRNA levels of CCAAT/enhancer-binding protein homologous protein (CHOP) and activating transcription factor 3 (ATF3) in pancreatic cancer cell lines. In addition, gossypol facilitated the cleavage of caspase-3 via protein kinase RNA-like ER kinase (PERK), CHOP, and Bax/Bcl-2 upregulation in both cells, whereas the upregulation of ATF was limited to BxPC-3 cells. Finally, a three-dimensional culture experiment confirmed the successful suppression of cancer cell spheroids via gossypol treatment. Taken together, our data suggest that gossypol may trigger apoptosis in pancreatic cancer cells via the PERK-CHOP signaling pathway. These findings propose a promising therapeutic approach to pancreatic cancer treatment using gossypol.