DOI QR코드

DOI QR Code

Gossypol Induces Apoptosis of Human Pancreatic Cancer Cells via CHOP/Endoplasmic Reticulum Stress Signaling Pathway

  • Lee, Soon (Division of Analytical Science, Korea Basic Science Institute) ;
  • Hong, Eunmi (Division of Analytical Science, Korea Basic Science Institute) ;
  • Jo, Eunbi (Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University) ;
  • Kim, Z-Hun (Microbial Research Department, Nakdonggang National Institute of Biological Resources) ;
  • Yim, Kyung June (Microbial Research Department, Nakdonggang National Institute of Biological Resources) ;
  • Woo, Sung Hwan (Department of Biological Engineering, Inha University) ;
  • Choi, Yong-Soo (Department of Biotechnology, CHA University) ;
  • Jang, Hyun-Jin (Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2021.10.13
  • Accepted : 2022.02.21
  • Published : 2022.05.28

Abstract

Gossypol, a natural phenolic aldehyde present in cotton plants, was originally used as a means of contraception, but is currently being studied for its anti-proliferative and anti-metastatic effects on various cancers. However, the intracellular mechanism of action regarding the effects of gossypol on pancreatic cancer cells remains unclear. Here, we investigated the anti-cancer effects of gossypol on human pancreatic cancer cells (BxPC-3 and MIA PaCa-2). Cell counting kit-8 assays, annexin V/propidium iodide staining assays, and transmission electron microscopy showed that gossypol induced apoptotic cell death and apoptotic body formation in both cell lines. RNA sequencing analysis also showed that gossypol increased the mRNA levels of CCAAT/enhancer-binding protein homologous protein (CHOP) and activating transcription factor 3 (ATF3) in pancreatic cancer cell lines. In addition, gossypol facilitated the cleavage of caspase-3 via protein kinase RNA-like ER kinase (PERK), CHOP, and Bax/Bcl-2 upregulation in both cells, whereas the upregulation of ATF was limited to BxPC-3 cells. Finally, a three-dimensional culture experiment confirmed the successful suppression of cancer cell spheroids via gossypol treatment. Taken together, our data suggest that gossypol may trigger apoptosis in pancreatic cancer cells via the PERK-CHOP signaling pathway. These findings propose a promising therapeutic approach to pancreatic cancer treatment using gossypol.

Keywords

Acknowledgement

This study was supported by a grant (Project No. NNIBR202202109) from Nakdonggang National Institute of Biological Resources funded by the Ministry of Environment of the Korean government.

References

  1. Rawla P, Sunkara T, Gaduputi V. 2019. Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J. Oncol. 10: 10-27. https://doi.org/10.14740/wjon1166
  2. McGuigan A, Kelly P, Turkington RC, Jones C, Coleman HG, McCain RS. 2018. Pancreatic cancer: a review of clinical diagnosis, epidemiology, treatment and outcomes. World J. Gastroenterol. 24: 4846-4861. https://doi.org/10.3748/wjg.v24.i43.4846
  3. Sheikh M, Masoudi S, Bakhshandeh R, Moayyedkazemi A, Zamani F, Nikfam S, et al. 2020. Survival features, prognostic factors, and determinants of diagnosis and treatment among Iranian patients with pancreatic cancer, a prospective study. PLoS One 15: e0243511. https://doi.org/10.1371/journal.pone.0243511
  4. Carrato A, Falcone A, Ducreux M, Valle JW, Parnaby A, Djazouli K, et al. 2015. A systematic review of the burden of pancreatic cancer in europe: real-world impact on survival, quality of life and costs. J. Gastrointest. Cancer 46: 201-211. https://doi.org/10.1007/s12029-015-9724-1
  5. Luo W, Tao J, Zheng L, Zhang T. 2020. Current epidemiology of pancreatic cancer: challenges and opportunities. Chin. J. Cancer Res. 32: 705-719. https://doi.org/10.21147/j.issn.1000-9604.2020.06.04
  6. Carioli G, Malvezzi M, Bertuccio P, Boffetta P, Levi F, La Vecchia C, et al. 2021. European cancer mortality predictions for the year 2021 with focus on pancreatic and female lung cancer. Ann. Oncol. 32: 478-487. https://doi.org/10.1016/j.annonc.2021.01.006
  7. Rahib L, Wehner MR, Matrisian LM, Nead KT. 2021. Estimated projection of US cancer incidence and death to 2040. JAMA Netw. Open 4: e214708. https://doi.org/10.1001/jamanetworkopen.2021.4708
  8. Song SW, Cheng JF, Liu N, Zhao TH. 2014. Diagnosis and treatment of pancreatic metastases in 22 patients: a retrospective study. World J. Surg. Oncol. 12: 299. https://doi.org/10.1186/1477-7819-12-299
  9. Cannistra M, Ruggiero M, Zullo A, Serafini S, Grande R, Nardo B. 2015. Metastases of pancreatic adenocarcinoma: a systematic review of literature and a new functional concept. Int. J. Surg. 21 Suppl 1: S15-21. https://doi.org/10.1016/j.ijsu.2015.04.093
  10. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. 2011. Pancreatic cancer. Lancet 378: 607-620. https://doi.org/10.1016/S0140-6736(10)62307-0
  11. Das S, Batra SK. 2015. Pancreatic cancer metastasis: are we being pre-EMTed? Curr. Pharm. Des. 21: 1249-1255. https://doi.org/10.2174/1381612821666141211115234
  12. Hidalgo M, Cascinu S, Kleeff J, Labianca R, Lohr JM, Neoptolemos J, et al. 2015. Addressing the challenges of pancreatic cancer: future directions for improving outcomes. Pancreatology 15: 8-18. https://doi.org/10.1016/j.pan.2014.10.001
  13. Jang HJ, Yang JH, Hong E, Jo E, Lee S, Lee S, et al. 2021. Chelidonine induces apoptosis via GADD45a-p53 regulation in human pancreatic cancer cells. Integr. Cancer Ther. 20: 15347354211006191.
  14. Torphy RJ, Fujiwara Y, Schulick RD. 2020. Pancreatic cancer treatment: better, but a long way to go. Surg. Today 50: 1117-1125. https://doi.org/10.1007/s00595-020-02028-0
  15. Roth MT, Cardin DB, Berlin JD. 2020. Recent advances in the treatment of pancreatic cancer. F1000Res 9: F1000.
  16. Ouyang G, Liu Z, Huang S, Li Q, Xiong L, Miao X, et al. 2016. Gemcitabine plus cisplatin versus gemcitabine alone in the treatment of pancreatic cancer: a meta-analysis. World J. Surg. Oncol. 14: 59. https://doi.org/10.1186/s12957-016-0813-9
  17. Lorusso V, Manzione L, De Vita F, Antimi M, Selvaggi FP, De Lena M. 2000. Gemcitabine plus cisplatin for advanced transitional cell carcinoma of the urinary tract: a phase II multicenter trial. J. Urol. 164: 53-56. https://doi.org/10.1016/S0022-5347(05)67447-2
  18. Mallick JA, Ali SA, Siddiqui N, Fareed A. 2003. Impact of Gemcitabine and Cisplatin with radiotherapy in locally advanced or metastatic transitional cell carcinoma of urinary bladder. J. Pak. Med. Assoc. 53: 547-552.
  19. Lin SR, Chang CH, Hsu CF, Tsai MJ, Cheng H, Leong MK, et al. 2020. Natural compounds as potential adjuvants to cancer therapy: preclinical evidence. Br. J. Pharmacol. 177: 1409-1423. https://doi.org/10.1111/bph.14816
  20. Volate SR, Kawasaki BT, Hurt EM, Milner JA, Kim YS, White J, et al. 2010. Gossypol induces apoptosis by activating p53 in prostate cancer cells and prostate tumor-initiating cells. Mol. Cancer Ther. 9: 461-470. https://doi.org/10.1158/1535-7163.MCT-09-0507
  21. Keshmiri-Neghab H, Goliaei B. 2014. Therapeutic potential of gossypol: an overview. Pharm. Biol. 52: 124-128. https://doi.org/10.3109/13880209.2013.832776
  22. Moon DO, Choi YH, Moon SK, Kim WJ, Kim GY. 2011. Gossypol decreases tumor necrosis factor-alpha-induced intercellular adhesion molecule-1 expression via suppression of NF-κB activity. Food Chem. Toxicol. 49: 999-1005. https://doi.org/10.1016/j.fct.2011.01.006
  23. Balakrishnan K, Wierda WG, Keating MJ, Gandhi V. 2008. Gossypol, a BH3 mimetic, induces apoptosis in chronic lymphocytic leukemia cells. Blood 112: 1971-1980. https://doi.org/10.1182/blood-2007-12-126946
  24. Xiong J, Li J, Yang Q, Wang J, Su T, Zhou S. 2017. Gossypol has anti-cancer effects by dual-targeting MDM2 and VEGF in human breast cancer. Breast Cancer Res. 19: 27. https://doi.org/10.1186/s13058-017-0818-5
  25. Huang YW, Wang LS, Dowd MK, Wan PJ, Lin YC. 2009. (-)-Gossypol reduces invasiveness in metastatic prostate cancer cells. Anticancer Res. 29: 2179-2188.
  26. Oyadomari S, Araki E, Mori M. 2002. Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 7: 335-345. https://doi.org/10.1023/A:1016175429877
  27. Pommier A, Anaparthy N, Memos N, Kelley ZL, Gouronnec A, Yan R, et al. 2018. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science 360: eaao4908. https://doi.org/10.1126/science.aao4908
  28. Lu L, Zeng J. 2017. Evaluation of K-ras and p53 expression in pancreatic adenocarcinoma using the cancer genome atlas. PLoS One 12: e0181532. https://doi.org/10.1371/journal.pone.0181532
  29. Oakes SA. 2020. Endoplasmic reticulum stress signaling in cancer cells. Am. J. Pathol. 190: 934-946. https://doi.org/10.1016/j.ajpath.2020.01.010
  30. Chen X, Cubillos-Ruiz JR. 2021. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat. Rev. Cancer 21: 71-88. https://doi.org/10.1038/s41568-020-00312-2
  31. Krebs J, Agellon LB, Michalak M. 2015. Ca2+ homeostasis and endoplasmic reticulum (ER) stress: an integrated view of calcium signaling. Biochem. Biophys. Res. Commun. 460: 114-121. https://doi.org/10.1016/j.bbrc.2015.02.004
  32. Deniaud A, Sharaf el dein O, Maillier E, Poncet D, Kroemer G, Lemaire C, et al. 2008. Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 27: 285-299. https://doi.org/10.1038/sj.onc.1210638
  33. Sitia R, Braakman I. 2003. Quality control in the endoplasmic reticulum protein factory. Nature 426: 891-894. https://doi.org/10.1038/nature02262
  34. Nishitoh H. 2012. CHOP is a multifunctional transcription factor in the ER stress response. J. Biochem. 151: 217-219. https://doi.org/10.1093/jb/mvr143
  35. Jerry Chiang WC, Lin JH. 2014. The effects of IRE1, ATF6, and PERK signaling on adRP-linked rhodopsins. Adv. Exp. Med. Biol. 801: 661-667. https://doi.org/10.1007/978-1-4614-3209-8_83
  36. Gardner BM, Pincus D, Gotthardt K, Gallagher CM, Walter P. 2013. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb Perspect. Biol. 5: a013169. https://doi.org/10.1101/cshperspect.a013169
  37. Adams CJ, Kopp MC, Larburu N, Nowak PR, Ali MMU. 2019. Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Front. Mol. Biosci. 6: 11. https://doi.org/10.3389/fmolb.2019.00011
  38. Lin Y, Jiang M, Chen W, Zhao T, Wei Y. 2019. Cancer and ER stress: Mutual crosstalk between autophagy, oxidative stress and inflammatory response. Biomed. Pharmacother. 118: 109249. https://doi.org/10.1016/j.biopha.2019.109249
  39. Kim I, Xu W, Reed JC. 2008. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 7: 1013-1030. https://doi.org/10.1038/nrd2755
  40. Zhao H, Huber L, Lu W, Peter NJ, An D, De Geuser F, et al. 2020. Interplay of chemistry and faceting at grain boundaries in a model Al alloy. Phys. Rev. Lett. 124: 106102. https://doi.org/10.1103/physrevlett.124.106102
  41. Oyadomari S, Mori M. 2004. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 11: 381-389. https://doi.org/10.1038/sj.cdd.4401373
  42. Sheng W, Wang G, Tang J, Shi X, Cao R, Sun J, et al. 2020. Calreticulin promotes EMT in pancreatic cancer via mediating Ca2+ dependent acute and chronic endoplasmic reticulum stress. J. Exp. Clin. Cancer Res. 39: 209. https://doi.org/10.1186/s13046-020-01702-y
  43. Xiang JF, Wang WQ, Liu L, Xu HX, Wu CT, Yang JX, et al. 2016. Mutant p53 determines pancreatic cancer poor prognosis to pancreatectomy through upregulation of cavin-1 in patients with preoperative serum CA19-9 >/= 1,000 U/mL. Sci. Rep. 6: 19222. https://doi.org/10.1038/srep19222
  44. Deer EL, Gonzalez-Hernandez J, Coursen JD, Shea JE, Ngatia J, Scaife CL, et al. 2010. Phenotype and genotype of pancreatic cancer cell lines. Pancreas 39: 425-435. https://doi.org/10.1097/MPA.0b013e3181c15963
  45. Cao H, Sethumadhavan K, Cao F, Wang TTY. 2021. Gossypol decreased cell viability and down-regulated the expression of a number of genes in human colon cancer cells. Sci. Rep. 11: 5922. https://doi.org/10.1038/s41598-021-84970-8
  46. Trapnell C, Pachter L, Salzberg SL. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25: 1105-1111. https://doi.org/10.1093/bioinformatics/btp120
  47. Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L. 2011. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol. 12: R22. https://doi.org/10.1186/gb-2011-12-3-r22
  48. Walker JM. 1994. The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol. Biol. 32: 5-8.
  49. Lee J, Kwon J, Kim D, Park M, Kim K, Bae I, et al. 2021. Gene expression profiles associated with radio-responsiveness in locally advanced rectal cancer. Biology (Basel) 10: 500.
  50. Chaicharoenaudomrung N, Kunhorm P, Noisa P. 2019. Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling. World J. Stem Cells 11: 1065-1083. https://doi.org/10.4252/wjsc.v11.i12.1065
  51. Lv D, Hu Z, Lu L, Lu H, Xu X. 2017. Three-dimensional cell culture: a powerful tool in tumor research and drug discovery. Oncol. Lett. 14: 6999-7010.
  52. Binet F, Sapieha P. 2015. ER stress and angiogenesis. Cell Metab. 22: 560-575. https://doi.org/10.1016/j.cmet.2015.07.010
  53. Walter P, Ron D. 2011. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334: 1081-1086. https://doi.org/10.1126/science.1209038
  54. Chevet E, Hetz C, Samali A. 2015. Endoplasmic reticulum stress-activated cell reprogramming in oncogenesis. Cancer Discov. 5: 586-597. https://doi.org/10.1158/2159-8290.CD-14-1490
  55. Samanta S, Yang S, Debnath B, Xue D, Kuang Y, Ramkumar K, et al. 2021. The hydroxyquinoline analogue YUM70 inhibits GRP78 to induce ER stress-mediated apoptosis in pancreatic cancer. Cancer Res. 81: 1883-1895.
  56. Mohammad RM, Wang S, Banerjee S, Wu X, Chen J, Sarkar FH. 2005. Nonpeptidic small-molecule inhibitor of Bcl-2 and Bcl-XL, (-)-Gossypol, enhances biological effect of genistein against BxPC-3 human pancreatic cancer cell line. Pancreas 31: 317-324. https://doi.org/10.1097/01.mpa.0000179731.46210.01
  57. Buscail L, Bournet B, Cordelier P. 2020. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 17: 153-168. https://doi.org/10.1038/s41575-019-0245-4
  58. Saraste A, Pulkki K. 2000. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc. Res. 45: 528-537. https://doi.org/10.1016/s0008-6363(99)00384-3
  59. Burattini S, Falcieri E. 2013. Analysis of cell death by electron microscopy. Methods Mol. Biol. 1004: 77-89. https://doi.org/10.1007/978-1-62703-383-1_7
  60. van Heerde WL, Robert-Offerman S, Dumont E, Hofstra L, Doevendans PA, Smits JF, et al. 2000. Markers of apoptosis in cardiovascular tissues: focus on Annexin V. Cardiovasc. Res. 45: 549-559. https://doi.org/10.1016/S0008-6363(99)00396-X
  61. Messeha SS, Zarmouh NO, Mendonca P, Alwagdani H, Cotton C, Soliman KFA. 2019. Effects of gossypol on apoptosisrelated gene expression in racially distinct triplenegative breast cancer cells. Oncol. Rep. 42: 467-478.
  62. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, et al. 2004. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18: 3066-3077. https://doi.org/10.1101/gad.1250704
  63. Kojima E, Takeuchi A, Haneda M, Yagi A, Hasegawa T, Yamaki K, et al. 2003. The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress: elucidation by GADD34-deficient mice. FASEB J. 17: 1573-1575.
  64. Urra H, Dufey E, Lisbona F, Rojas-Rivera D, Hetz C. 2013. When ER stress reaches a dead end. Biochim. Biophys. Acta. 1833: 3507-3517. https://doi.org/10.1016/j.bbamcr.2013.07.024
  65. Lin RJ, Wu IJ, Hong JY, Liu BH, Liang RY, Yuan TM, et al. 2018. Capsaicin-induced TRIB3 upregulation promotes apoptosis in cancer cells. Cancer Manag. Res. 10: 4237-4248. https://doi.org/10.2147/CMAR.S162383
  66. Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H. 2005. TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J. 24: 1243-1255. https://doi.org/10.1038/sj.emboj.7600596
  67. Galehdar Z, Swan P, Fuerth B, Callaghan SM, Park DS, Cregan SP. 2010. Neuronal apoptosis induced by endoplasmic reticulum stress is regulated by ATF4-CHOP-mediated induction of the Bcl-2 homology 3-only member PUMA. J. Neurosci. 30: 16938-16948. https://doi.org/10.1523/JNEUROSCI.1598-10.2010
  68. Pluquet O, Qu LK, Baltzis D, Koromilas AE. 2005. Endoplasmic reticulum stress accelerates p53 degradation by the cooperative actions of Hdm2 and glycogen synthase kinase 3β. Mol. Cell. Biol. 25: 9392-9405. https://doi.org/10.1128/MCB.25.21.9392-9405.2005
  69. Byun S, Namba T, Lee SW. 2015. Losing p53 loosens up ER-stress. Aging (Albany NY). 7: 895-896. https://doi.org/10.18632/aging.100847
  70. Edagawa M, Kawauchi J, Hirata M, Goshima H, Inoue M, Okamoto T, et al. 2014. Role of activating transcription factor 3 (ATF3) in endoplasmic reticulum (ER) stress-induced sensitization of p53-deficient human colon cancer cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis through up-regulation of death receptor 5 (DR5) by zerumbone and celecoxib. J. Biol. Chem. 289: 21544-21561. https://doi.org/10.1074/jbc.M114.558890
  71. Taketani K, Kawauchi J, Tanaka-Okamoto M, Ishizaki H, Tanaka Y, Sakai T, et al. 2012. Key role of ATF3 in p53-dependent DR5 induction upon DNA damage of human colon cancer cells. Oncogene 31: 2210-2221. https://doi.org/10.1038/onc.2011.397
  72. Wortel IMN, van der Meer LT, Kilberg MS, van Leeuwen FN. 2017. Surviving stress: Modulation of ATF4-mediated stress responses in normal and malignant cells. Trends Endocrinol. Metab. 28: 794-806. https://doi.org/10.1016/j.tem.2017.07.003
  73. Zong Y, Feng S, Cheng J, Yu C, Lu G. 2017. Up-regulated ATF4 expression increases cell sensitivity to apoptosis in response to radiation. Cell Physiol. Biochem. 41: 784-794. https://doi.org/10.1159/000458742
  74. Iurlaro R, Munoz-Pinedo C. 2016. Cell death induced by endoplasmic reticulum stress. FEBS J. 283: 2640-2652. https://doi.org/10.1111/febs.13598
  75. Ma Y, Shi Y, Zou X, Wu Q, Wang J. 2020. Apoptosis induced by mercuric chloride is associated with upregulation of PERK-ATF4-CHOP pathway in chicken embryonic kidney cells. Poult. Sci. 99: 5802-5813. https://doi.org/10.1016/j.psj.2020.06.084
  76. Pupo E, Avanzato D, Middonti E, Bussolino F, Lanzetti L. 2019. KRAS-driven metabolic rewiring reveals novel actionable targets in cancer. Front. Oncol. 9: 848. https://doi.org/10.3389/fonc.2019.00848
  77. Gwinn DM, Lee AG, Briones-Martin-Del-Campo M, Conn CS, Simpson DR, Scott AI, et al. 2018. Oncogenic KRAS regulates amino acid homeostasis and asparagine biosynthesis via ATF4 and Alters sensitivity to L-asparaginase. Cancer Cell 33: 91-107 e106. https://doi.org/10.1016/j.ccell.2017.12.003
  78. B'Chir W, Maurin AC, Carraro V, Averous J, Jousse C, Muranishi Y, et al. 2013. The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 41: 7683-7699. https://doi.org/10.1093/nar/gkt563
  79. Piffoux M, Eriau E, Cassier PA. 2021. Autophagy as a therapeutic target in pancreatic cancer. Br. J. Cancer 124: 333-344. https://doi.org/10.1038/s41416-020-01039-5
  80. Burgos MH, Ito S, Segal SJ, Tran PT. 1997. Effect of gossypol on the ultrastructure of spisula sperm. Biol. Bull. 193: 228-229. https://doi.org/10.1086/bblv193n2p228
  81. He X, Wu C, Cui Y, Zhu H, Gao Z, Li B, et al. 2017. The aldehyde group of gossypol induces mitochondrial apoptosis via ROS-SIRT1-p53-PUMA pathway in male germline stem cell. Oncotarget 8: 100128-100140. https://doi.org/10.18632/oncotarget.22044
  82. Adams JM, Cory S. 2007. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26: 1324-1337. https://doi.org/10.1038/sj.onc.1210220
  83. Srinivas G, Kusumakumary P, Nair MK, Panicker KR, Pillai MR. 2000. Mutant p53 protein, Bcl-2/Bax ratios and apoptosis in paediatric acute lymphoblastic leukaemia. J. Cancer Res. Clin. Oncol. 126: 62-67. https://doi.org/10.1007/s004320050010
  84. Hildeman DA, Mitchell T, Aronow B, Wojciechowski S, Kappler J, Marrack P. 2003. Control of Bcl-2 expression by reactive oxygen species. Proc. Natl. Acad. Sci. USA 100: 15035-15040. https://doi.org/10.1073/pnas.1936213100
  85. Cai J, Yang J, Jones DP. 1998. Mitochondrial control of apoptosis: the role of cytochrome c. Biochim. Biophys. Acta 1366: 139-149. https://doi.org/10.1016/S0005-2728(98)00109-1
  86. Campos G, Schmidt-Heck W, Ghallab A, Rochlitz K, Putter L, Medinas DB, et al. 2014. The transcription factor CHOP, a central component of the transcriptional regulatory network induced upon CCl4 intoxication in mouse liver, is not a critical mediator of hepatotoxicity. Arch. Toxicol. 88: 1267-1280. https://doi.org/10.1007/s00204-014-1240-8
  87. Bromati CR, Lellis-Santos C, Yamanaka TS, Nogueira TC, Leonelli M, Caperuto LC, et al. 2011. UPR induces transient burst of apoptosis in islets of early lactating rats through reduced AKT phosphorylation via ATF4/CHOP stimulation of TRB3 expression. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300: R92-100. https://doi.org/10.1152/ajpregu.00169.2010
  88. Li Y, Guo Y, Tang J, Jiang J, Chen Z. 2014. New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim. Biophys. Sin (Shanghai). 46: 629-640. https://doi.org/10.1093/abbs/gmu048
  89. Dodou K, Anderson RJ, Lough WJ, Small DA, Shelley MD, Groundwater PW. 2005. Synthesis of gossypol atropisomers and derivatives and evaluation of their anti-proliferative and anti-oxidant activity. Bioorg. Med. Chem. 13: 4228-4237. https://doi.org/10.1016/j.bmc.2005.04.026
  90. Wang X, Beckham TH, Morris JC, Chen F, Gangemi JD. 2008. Bioactivities of gossypol, 6-methoxygossypol, and 6,6'-dimethoxygossypol. J. Agric. Food Chem. 56: 4393-4398. https://doi.org/10.1021/jf073297u
  91. Lagies S, Schlimpert M, Neumann S, Waldin A, Kammerer B, Borner C, et al. 2020. Cells grown in three-dimensional spheroids mirror in vivo metabolic response of epithelial cells. Commun. Biol. 3: 246. https://doi.org/10.1038/s42003-020-0973-6
  92. Motegi SI, Sekiguchi A, Uchiyama A, Uehara A, Fujiwara C, Yamazaki S, et al. 2017. Protective effect of mesenchymal stem cells on the pressure ulcer formation by the regulation of oxidative and endoplasmic reticulum stress. Sci. Rep. 7: 17186. https://doi.org/10.1038/s41598-017-17630-5
  93. Ruhle A, Thomsen A, Saffrich R, Voglstatter M, Bieber B, Sprave T, et al. 2020. Multipotent mesenchymal stromal cells are sensitive to thermic stress - potential implications for therapeutic hyperthermia. Int. J. Hyperthermia 37: 430-441. https://doi.org/10.1080/02656736.2020.1758350
  94. Lee EJ, Cardenes N, Alvarez D, Sellares J, Sembrat J, Aranda P, et al. 2020. Mesenchymal stem cells reduce ER stress via PERK-Nrf2 pathway in an aged mouse model. Respirology 25: 417-426. https://doi.org/10.1111/resp.13646