DOI QR코드

DOI QR Code

Functional Enhancers As Master Regulators of Tissue-Specific Gene Regulation and Cancer Development

  • Ko, Je Yeong (Molecular Medicine Laboratory, Department of Biological Sciences, Sookmyung Women's University) ;
  • Oh, Sumin (Research Institute of Women's Health, Sookmyung Women's University) ;
  • Yoo, Kyung Hyun (Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women's University)
  • Received : 2017.03.05
  • Accepted : 2017.03.30
  • Published : 2017.03.31

Abstract

Tissue-specific transcription is critical for normal development, and abnormalities causing undesirable gene expression may lead to diseases such as cancer. Such highly organized transcription is controlled by enhancers with specific DNA sequences recognized by transcription factors. Enhancers are associated with chromatin modifications that are distinct epigenetic features in a tissue-specific manner. Recently, super-enhancers comprising enhancer clusters co-occupied by lineage-specific factors have been identified in diverse cell types such as adipocytes, hair follicle stem cells, and mammary epithelial cells. In addition, noncoding RNAs, named eRNAs, are synthesized at super-enhancer regions before their target genes are transcribed. Many functional studies revealed that super-enhancers and eRNAs are essential for the regulation of tissue-specific gene expression. In this review, we summarize recent findings concerning enhancer function in tissue-specific gene regulation and cancer development.

Keywords

References

  1. Adam, R.C., Yang, H., Rockowitz, S., Larsen, S.B., Nikolova, M., Oristian, D.S., Polak, L., Kadaja, M., Asare, A., Zheng, D., et al. (2015). Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice. Nature 521, 366-370. https://doi.org/10.1038/nature14289
  2. Affer, M., Chesi, M., Chen, W.D., Keats, J.J., Demchenko, Y.N., Tamizhmani, K., Garbitt, V.M., Riggs, D.L., Brents, L.A., Roschke, A.V., et al. (2014). Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma. Leukemia 28, 1725-1735. https://doi.org/10.1038/leu.2014.70
  3. Andersson, R. (2015). Promoter or enhancer, what's the difference? Deconstruction of established distinctions and presentation of a unifying model. Bioessays 37, 314-323. https://doi.org/10.1002/bies.201400162
  4. Andersson, R., Gebhard, C., Miguel-Escalada, I., Hoof, I., Bornholdt, J., Boyd, M., Chen, Y., Zhao, X., Schmidl, C., Suzuki, T., et al. (2014). An atlas of active enhancers across human cell types and tissues. Nature 507, 455-461. https://doi.org/10.1038/nature12787
  5. Beagrie, R.A. and Pombo, A. (2016). Gene activation by metazoan enhancers: Diverse mechanisms stimulate distinct steps of transcription. Bioessays 38, 881-893. https://doi.org/10.1002/bies.201600032
  6. Chapuy, B., McKeown, M.R., Lin, C.Y., Monti, S., Roemer, M.G., Qi, J., Rahl, P.B., Sun, H.H., Yeda, K.T., Doench, J.G., et al. (2013). Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell 24, 777-790. https://doi.org/10.1016/j.ccr.2013.11.003
  7. Cheng, J.H., Pan, D.Z., Tsai, Z.T., and Tsai, H.K. (2015). Genome-wide analysis of enhancer RNA in gene regulation across 12 mouse tissues. Sci. Rep. 5, 12648. https://doi.org/10.1038/srep12648
  8. Christensen, C.L., Kwiatkowski, N., Abraham, B.J., Carretero, J., Al- Shahrour, F., Zhang, T., Chipumuro, E., Herter-Sprie, G.S., Akbay, E.A., Altabef, A., et al. (2014). Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor. Cancer Cell 26, 909-922. https://doi.org/10.1016/j.ccell.2014.10.019
  9. Creyghton, M.P., Cheng, A.W., Welstead, G.G., Kooistra, T., Carey, B.W., Steine, E.J., Hanna, J., Lodato, M.A., Frampton, G.M., Sharp, P.A., et al. (2010). Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. Sci. USA 107, 21931-21936. https://doi.org/10.1073/pnas.1016071107
  10. Dang, C.V. (2012). MYC on the path to cancer. Cell 149, 22-35. https://doi.org/10.1016/j.cell.2012.03.003
  11. Felsher, D.W., Zetterberg, A., Zhu, J., Tlsty, T., and Bishop, J.M. (2000). Overexpression of MYC causes p53-dependent G2 arrest of normal fibroblasts. Proc. Natl. Acad. Sci. USA 97, 10544-10548. https://doi.org/10.1073/pnas.190327097
  12. Gabay, M., Li, Y., and Felsher, D.W. (2014). MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb. Perspect. Med. 4, pii: a014241.
  13. Gosselin, D., Link, V.M., Romanoski, C.E., Fonseca, G.J., Eichenfield, D.Z., Spann, N.J., Stender, J.D., Chun, H.B., Garner, H., Geissmann, F., et al. (2014). Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159, 1327-1340. https://doi.org/10.1016/j.cell.2014.11.023
  14. Hah, N., Murakami, S., Nagari, A., Danko, C.G., and Kraus, W.L. (2013). Enhancer transcripts mark active estrogen receptor binding sites. Genome Res. 23, 1210-1223. https://doi.org/10.1101/gr.152306.112
  15. Hah, N., Benner, C., Chong, L.W., Yu, R.T., Downes, M., Evans, R.M. (2015). Inflammation-sensitive super enhancers form domains of coordinately regulated enhancer RNAs. Proc. Natl. Acad. Sci. USA 112, E297-302. https://doi.org/10.1073/pnas.1424028112
  16. Heintzman, N.D., Murakami, S., Nagari, A., Danko, C.G., and Kraus, W.L. (2009). Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459, 108-112. https://doi.org/10.1038/nature07829
  17. Herranz, D., Ambesi-Impiombato, A., Palomero, T., Schnell, S.A., Belver, L., Wendorff, A.A., Xu, L., Castillo-Martin, M., Llobet-Navas, D., Cordon-Cardo, C., et al. (2014). A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat. Med. 20, 1130-1137. https://doi.org/10.1038/nm.3665
  18. Heyn, H., Vidal, E., Ferreira, H.J., Vizoso, M., Sayols, S., Gomez, A., Moran, S., Boque-Sastre, R., Guil, S., Martinez-Cardus, A., et al. (2016). Epigenomic analysis detects aberrant super-enhancer DNA methylation in human cancer. Genome Biol. 17, 11. https://doi.org/10.1186/s13059-016-0879-2
  19. Hnisz, D., Abraham, B.J., Lee, T.I., Lau, A., Saint-Andre, V., Sigova, A.A., Hoke, H.A., and Young, R.A. (2013). Super-enhancers in the control of cell identity and disease. Cell 155, 934-947. https://doi.org/10.1016/j.cell.2013.09.053
  20. Hnisz, D., Schuijers, J., Lin, C.Y., Weintraub, A.S., Abraham, B.J., Lee, T.I., Bradner, J.E., and Young, R.A. (2015). Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers. Mol. Cell 58, 362-370. https://doi.org/10.1016/j.molcel.2015.02.014
  21. Hon, G.C., Hawkins, R.D. and Ren, B. (2009). Predictive chromatin signatures in the mammalian genome. Hum. Mol. Genet. 18, R195- 201. https://doi.org/10.1093/hmg/ddp409
  22. Hsieh, A.L., Walton, Z.E., Altman, B.J., Stine, Z.E., and Dang, C.V. (2015). MYC and metabolism on the path to cancer. Semin. Cell Dev. Biol. 43, 11-21. https://doi.org/10.1016/j.semcdb.2015.08.003
  23. Huang, J., Liu, X., Li, D., Shao, Z., Cao, H., Zhang, Y., Trompouki, E., Bowman, T.V., Zon, L.I., Yuan, G.C., et al. (2016). Dynamic control of enhancer repertoires drives lineage and stage-specific transcription during hematopoiesis. Dev. Cell 36, 9-23. https://doi.org/10.1016/j.devcel.2015.12.014
  24. Jiang, Y.Y., Lin, D.C., Mayakonda, A., Hazawa, M., Ding, L.W., Chien, W.W., Xu, L., Chen, Y., Xiao, J.F., Senapedis, W., et al. (2016). Targeting super-enhancer-associated oncogenes in oesophageal squamous cell carcinoma. Gut pii: gutjnl-2016-311818.
  25. Kaikkonen, M.U., Lin, D.C., Mayakonda, A., Hazawa, M., Ding, L.W., Chien, W.W., Xu, L., Chen, Y., Xiao, J.F., Senapedis, W., et al. (2013). Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol. Cell 51, 310-325. https://doi.org/10.1016/j.molcel.2013.07.010
  26. Kim, T.K., Hemberg, M., Gray, J.M., Costa, A.M., Bear, D.M., Wu, J., Harmin, D.A., Laptewicz, M., Barbara-Haley, K., Kuersten, S., et al. (2010). Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182-187. https://doi.org/10.1038/nature09033
  27. King, A.D., Hemberg, M., Gray, J.M., Costa, A.M., Bear, D.M., Wu, J., Harmin, D.A., Laptewicz, M., Barbara-Haley, K., Kuersten, S., et al. (2016). Reversible regulation of promoter and enhancer histone landscape by DNA methylation in mouse embryonic stem cells. Cell Rep. 17, 289-302. https://doi.org/10.1016/j.celrep.2016.08.083
  28. Kitagawa, Y., Ohkura, N., Kidani, Y., Vandenbon, A., Hirota, K., Kawakami, R., Yasuda, K., Motooka, D., Nakamura, S., Kondo, M., et al. (2017). Guidance of regulatory T cell development by Satb1- dependent super-enhancer establishment. Nat. Immunol. 18, 173-183.
  29. Kron, K.J., Bailey, S.D., and Lupien, M. (2014). Enhancer alterations in cancer: a source for a cell identity crisis. Genome Med. 6, 77. https://doi.org/10.1186/s13073-014-0077-3
  30. Lam, M.T., Li, W., Rosenfeld, M.G., and Glass, C.K. (2014). Enhancer RNAs and regulated transcriptional programs. Trends Biochem. Sci. 39, 170-182. https://doi.org/10.1016/j.tibs.2014.02.007
  31. Landen, C.N., Jr., Goodman, B., Katre, A.A., Steg, A.D., Nick, A.M., Stone, R.L., Miller, L.D., Mejia, P.V., Jennings, N.B., Gershenson, D.M., et al. (2010). Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol. Cancer Ther. 9, 3186-3199. https://doi.org/10.1158/1535-7163.MCT-10-0563
  32. Le Noir, S., Laffleur, B., Carrion, C., Garot, A., Lecardeur, S., Pinaud, E., Denizot, Y., Skok, J., and Cogne, M. (2017). The IgH locus 3' cisregulatory super-enhancer co-opts AID for allelic transvection. Oncotarget [Epub ahead of print]
  33. Leveille, N., Melo, C.A., Rooijers, K., Diaz-Lagares, A., Melo, S.A., Korkmaz, G., Lopes, R., Akbari Moqadam, F., Maia, A.R., Wijchers, P.J., et al. (2015). Genome-wide profiling of p53-regulated enhancer RNAs uncovers a subset of enhancers controlled by a lncRNA. Nat. Commun. 6, 6520. https://doi.org/10.1038/ncomms7520
  34. Li, W., Notani, D., Ma, Q., Tanasa, B., Nunez, E., Chen, A.Y., Merkurjev, D., Zhang, J., Ohgi, K., Song, X., et al. (2013). Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498, 516-520. https://doi.org/10.1038/nature12210
  35. Li, W., Hu, Y., Oh, S., Ma, Q., Merkurjev, D., Song, X., Zhou, X., Liu, Z., Tanasa, B., He, X., et al. (2015). Condensin I and II complexes license full estrogen receptor alpha-dependent enhancer activation. Mol. Cell 59, 188-202. https://doi.org/10.1016/j.molcel.2015.06.002
  36. Li, W., Notani, D., and Rosenfeld, M.G. (2016). Enhancers as noncoding RNA transcription units: recent insights and future perspectives. Nat. Rev. Genet. 17, 207-223. https://doi.org/10.1038/nrg.2016.4
  37. Liang, J., Zhou, H., Gerdt, C., Tan, M., Colson, T., Kaye, K.M., Kieff, E., and Zhao, B. (2016). Epstein-Barr virus super-enhancer eRNAs are essential for MYC oncogene expression and lymphoblast proliferation. Proc. Natl. Acad. Sci. USA 113, 14121-14126. https://doi.org/10.1073/pnas.1616697113
  38. Liu, C.F., and Lefebvre, V. (2015). The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis. Nucleic Acids Res. 43, 8183-8203. https://doi.org/10.1093/nar/gkv688
  39. Loven, J., Hoke, H.A., Lin, C.Y., Lau, A., Orlando, D.A., Vakoc, C.R., Bradner, J.E., Lee, T.I., and Young, R.A. (2013). Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320-334. https://doi.org/10.1016/j.cell.2013.03.036
  40. Mansour, M.R., Abraham, B.J., Anders, L., Berezovskaya, A., Gutierrez, A., Durbin, A.D., Etchin, J., Lawton, L., Sallan, S.E., Silverman, L.B., et al. (2014). Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science 346, 1373-1377. https://doi.org/10.1126/science.1259037
  41. Mattick, J.S. and Makunin, I.V. (2006). Non-coding RNA. Hum. Mol. Genet. 15 Spec. No 1, R17-29.
  42. Mousavi, K., Zare, H., Dell'orso, S., Grontved, L., Gutierrez-Cruz, G., Derfoul, A., Hager, G.L., and Sartorelli, V. (2013). eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol. Cell 51, 606-617. https://doi.org/10.1016/j.molcel.2013.07.022
  43. Murakawa, Y., Yoshihara, M., Kawaji, H., Nishikawa, M., Zayed, H., Suzuki, H., Fantom, Consortium., and Hayashizaki, Y. (2016). Enhanced identification of transcriptional enhancers provides mechanistic insights into diseases. Trends Genet. 32, 76-88. https://doi.org/10.1016/j.tig.2015.11.004
  44. Niederriter, A.R., Varshney, A., Parker, S.C., and Martin, D.M. (2015). Super enhancers in cancers, complex disease, and developmental disorders. Genes (Basel) 6, 1183-1200. https://doi.org/10.3390/genes6041183
  45. Ohba, S., He, X., Hojo, H., and McMahon, A.P. (2015). Distinct transcriptional programs underlie Sox9 regulation of the mammalian chondrocyte. Cell Rep. 12, 229-243. https://doi.org/10.1016/j.celrep.2015.06.013
  46. Pedersen, N., Mortensen, S., Sorensen, S.B., Pedersen, M.W., Rieneck, K., Bovin, L.F., and Poulsen, H.S. (2003). Transcriptional gene expression profiling of small cell lung cancer cells. Cancer Res. 63, 1943-1953.
  47. Pefanis, E., Wang, J., Rothschild, G., Lim, J., Kazadi, D., Sun, J., Federation, A., Chao, J., Elliott, O., Liu, Z.P., et al. (2015). RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell 161, 774-789. https://doi.org/10.1016/j.cell.2015.04.034
  48. Pelish, H.E., Liau, B.B., Nitulescu, I.I., Tangpeerachaikul, A., Poss, Z.C., Da Silva, D.H., Caruso, B.T., Arefolov, A., Fadeyi, O., Christie, A.L., et al. (2015). Mediator kinase inhibition further activates superenhancer- associated genes in AML. Nature 526, 273-276. https://doi.org/10.1038/nature14904
  49. Pnueli, L., Rudnizky, S., Yosefzon, Y., and Melamed, P. (2015). RNA transcribed from a distal enhancer is required for activating the chromatin at the promoter of the gonadotropin alpha-subunit gene. Proc. Natl. Acad. Sci. USA 112, 4369-4374. https://doi.org/10.1073/pnas.1414841112
  50. Pott, S,. and Lieb, J.D. (2015). What are super-enhancers? Nat. Genet. 47, 8-12. https://doi.org/10.1038/ng.3167
  51. Qian, J., Wang, Q., Dose, M., Pruett, N., Kieffer-Kwon, K.R., Resch, W., Liang, G., Tang, Z., Mathe, E., Benne,r C., et al. (2014). B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity. Cell 159, 1524-1537. https://doi.org/10.1016/j.cell.2014.11.013
  52. Schaukowitch, K., Joo, J.Y., Liu, X., Watts, J.K., Martinez, C., and Kim, T.K. (2014). Enhancer RNA facilitates NELF release from immediate early genes. Mol. Cell 56, 29-42. https://doi.org/10.1016/j.molcel.2014.08.023
  53. Schmidt, S.F., Larsen, B.D., Loft, A., Nielsen, R., Madsen, J.G., and Mandrup, S. (2015). Acute TNF-induced repression of cell identity genes is mediated by NFkappaB-directed redistribution of cofactors from super-enhancers. Genome Res. 25, 1281-1294. https://doi.org/10.1101/gr.188300.114
  54. Shibayama, Y., Fanucchi, S., Magagula, L., and Mhlanga, M.M. (2014). lncRNA and gene looping: what's the connection? Transcription 5, e28658. https://doi.org/10.4161/trns.28658
  55. Shin, H.Y., Willi, M., Yoo, K.H., Zeng, X., Wang, C., Metser, G., and Hennighausen, L. (2016). Hierarchy within the mammary STAT5- driven Wap super-enhancer. Nat. Genet. 48, 904-911. https://doi.org/10.1038/ng.3606
  56. Shlyueva, D., Stampfel, G., and Stark, A. (2014). Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15, 272-286. https://doi.org/10.1038/nrg3682
  57. Shou, Y., Martelli, M.L., Gabrea, A., Qi, Y., Brents, L.A., Roschke, A., Dewald, G., Kirsch, I.R., Bergsagel, P.L., and Kuehl, W.M. (2000). Diverse karyotypic abnormalities of the c-myc locus associated with cmyc dysregulation and tumor progression in multiple myeloma. Proc. Natl. Acad. Sci. USA 97, 228-233. https://doi.org/10.1073/pnas.97.1.228
  58. Siersbaek, R., Rabiee, A., Nielsen, R., Sidoli, S., Traynor, S., Loft, A., La Cour Poulsen, L., Rogowska-Wrzesinska, A., Jensen, O.N., and Mandrup, S. (2014). Transcription factor cooperativity in early adipogenic hotspots and super-enhancers. Cell Rep. 7, 1443-1455. https://doi.org/10.1016/j.celrep.2014.04.042
  59. Steg, A.D., Bevis, K.S., Katre, A.A., Ziebarth, A., Dobbin, Z.C., Alvarez, R.D., Zhang, K., Conner, M., and Landen, C.N. (2012). Stem cell pathways contribute to clinical chemoresistance in ovarian cancer. Clin. Cancer Res. 18, 869-881. https://doi.org/10.1158/1078-0432.CCR-11-2188
  60. Teppo, S., Laukkanen, S., Liuksiala, T., Nordlund, J., Oittinen, M., Teittinen, K., Gronroos, T., St-Onge, P., Sinnett, D., Syvanen, A.C., et al. (2016). Genome-wide repression of eRNA and target gene loci by the ETV6-RUNX1 fusion in acute leukemia. Genome Res. 26, 1468-1477. https://doi.org/10.1101/gr.193649.115
  61. Vahedi, G., Laukkanen, S., Liuksiala, T., Nordlund, J., Oittinen, M., Teittinen, K., Gronroos, T., St-Onge, P., Sinnett, D., Syvanen, A.C., et al. (2015). Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature 520, 558-562. https://doi.org/10.1038/nature14154
  62. van der Steen, T., Tindall, D.J., and Huang, H. (2013). Posttranslational modification of the androgen receptor in prostate cancer. Int. J. Mol. Sci. 14, 14833-14859. https://doi.org/10.3390/ijms140714833
  63. Wei, Y., Zhang, S., Shang, S., Zhang, B., Li, S., Wang, X., Wang, F., Su, J., Wu, Q., Liu, H., et al. (2016). SEA: a super-enhancer archive. Nucleic Acids Res. 44, D172-179. https://doi.org/10.1093/nar/gkv1243
  64. Whyte, W.A., Orlando, D.A., Hnisz, D., Abraham, B.J., Lin, C.Y., Kagey, M.H., Rahl, P.B., Lee, T.I., Young, R.A. (2013). Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307-319. https://doi.org/10.1016/j.cell.2013.03.035
  65. Willi, M., Yoo, K.H., Wang, C., Trajanoski, Z., and Hennighausen, L. (2016). Differential cytokine sensitivities of STAT5-dependent enhancers rely on Stat5 autoregulation. Nucleic Acids Res. 44, 10277-10291.
  66. Wu, H., Nord, A.S., Akiyama, J.A., Shoukry, M., Afzal, V., Rubin, E.M., Pennacchio, L.A., and Visel, A. (2014). Tissue-specific RNA expression marks distant-acting developmental enhancers. PLoS Genet. 10, e1004610. https://doi.org/10.1371/journal.pgen.1004610
  67. Yokoyama, Y., Zhu, H., Lee, J.H., Kossenkov, A.V., Wu, S.Y., Wickramasinghe, J.M., Yin, X., Palozola, K.C., Gardini, A., Showe, L.C., et al. (2016). BET inhibitors suppress ALDH activity by targeting ALDH1A1 super-enhancer in ovarian cancer. Cancer Res. 76, 6320- 6330. https://doi.org/10.1158/0008-5472.CAN-16-0854
  68. Zhang, S., Li, Y., Wu, Y., Shi, K., Bing, L., and Hao, J. (2012). Wnt/beta-catenin signaling pathway upregulates c-Myc expression to promote cell proliferation of P19 teratocarcinoma cells. Anat. Rec. (Hoboken) 295, 2104-2113. https://doi.org/10.1002/ar.22592
  69. Zhao, J., Zhao, Y., Wang, L., Zhang, J., Karnes, R.J., Kohli, M., Wang, G., and Huang, H. (2016). Alterations of androgen receptorregulated enhancer RNAs (eRNAs) contribute to enzalutamide resistance in castration-resistant prostate cancer. Oncotarget 7, 38551-38565. https://doi.org/10.18632/oncotarget.9535
  70. Zhao, Y., Wang, L., Ren, S., Wang, L., Blackburn, P.R., McNulty, M.S., Gao, X., Qiao, M., Vessella, R.L., Kohli, M., et al. (2016). Activation of P-TEFb by androgen receptor-regulated enhancer RNAs in castrationresistant prostate cancer. Cell Rep. 15, 599-610. https://doi.org/10.1016/j.celrep.2016.03.038

Cited by

  1. Targeting Transcription Factors for Cancer Treatment vol.23, pp.6, 2018, https://doi.org/10.3390/molecules23061479
  2. Alteration of Epigenetic Regulation by Long Noncoding RNAs in Cancer vol.19, pp.2, 2017, https://doi.org/10.3390/ijms19020570
  3. Epigenetic Targeting of Aberrant Transcriptional Modulation in Pancreatic Cancer vol.2, pp.2, 2018, https://doi.org/10.3390/epigenomes2020008
  4. Targeting Super-Enhancers for Disease Treatment and Diagnosis vol.41, pp.6, 2017, https://doi.org/10.14348/molcells.2018.2297
  5. Enhancer and super‐enhancer: Positive regulators in gene transcription vol.1, pp.3, 2018, https://doi.org/10.1002/ame2.12032
  6. Bromodomain protein inhibition: a novel therapeutic strategy in rheumatic diseases vol.4, pp.2, 2017, https://doi.org/10.1136/rmdopen-2018-000744
  7. Dissecting super-enhancer hierarchy based on chromatin interactions vol.9, pp.1, 2017, https://doi.org/10.1038/s41467-018-03279-9
  8. BC200 RNA: An Emerging Therapeutic Target and Diagnostic Marker for Human Cancer vol.41, pp.12, 2017, https://doi.org/10.14348/molcells.2018.0425
  9. Super-Enhancer-Associated Hub Genes In Chronic Myeloid Leukemia Identified Using Weighted Gene Co-Expression Network Analysis vol.11, pp.None, 2017, https://doi.org/10.2147/cmar.s214614
  10. MicroRNA-196a is regulated by ER and is a prognostic biomarker in ER+ breast cancer vol.120, pp.6, 2019, https://doi.org/10.1038/s41416-019-0395-8
  11. The therapeutic and diagnostic potential of regulatory noncoding RNAs in medulloblastoma vol.1, pp.1, 2017, https://doi.org/10.1093/noajnl/vdz023
  12. Dysregulated Transcriptional Control in Prostate Cancer vol.20, pp.12, 2019, https://doi.org/10.3390/ijms20122883
  13. A distal super enhancer mediates estrogen-dependent mouse uterine–specific gene transcription of Igf1 (insulin-like growth factor 1) vol.294, pp.25, 2019, https://doi.org/10.1074/jbc.ra119.008759
  14. Retroelement-Linked H3K4me1 Histone Tags Uncover Regulatory Evolution Trends of Gene Enhancers and Feature Quickly Evolving Molecular Processes in Human Physiology vol.8, pp.10, 2019, https://doi.org/10.3390/cells8101219
  15. The anti-cancer drugs curaxins target spatial genome organization vol.10, pp.1, 2017, https://doi.org/10.1038/s41467-019-09500-7
  16. Investigating the role of super-enhancer RNAs underlying embryonic stem cell differentiation vol.20, pp.suppl10, 2017, https://doi.org/10.1186/s12864-019-6293-x
  17. Emerging Roles of Estrogen-Regulated Enhancer and Long Non-Coding RNAs vol.21, pp.10, 2020, https://doi.org/10.3390/ijms21103711
  18. Aberrant activation of super enhancer and choline metabolism drive antiandrogen therapy resistance in prostate cancer vol.39, pp.42, 2017, https://doi.org/10.1038/s41388-020-01456-z
  19. ARID1A Mutations Promote P300-Dependent Endometrial Invasion through Super-Enhancer Hyperacetylation vol.33, pp.6, 2017, https://doi.org/10.1016/j.celrep.2020.108366
  20. Ontology-driven integrative analysis of omics data through Onassis vol.10, pp.None, 2017, https://doi.org/10.1038/s41598-020-57716-1
  21. Polymorphic mobile element insertions contribute to gene expression and alternative splicing in human tissues vol.21, pp.1, 2017, https://doi.org/10.1186/s13059-020-02101-4
  22. Mapping cis-regulatory elements in the midgestation mouse placenta vol.11, pp.1, 2017, https://doi.org/10.1038/s41598-021-01664-x