• Title/Summary/Keyword: engineering seismology

Search Result 86, Processing Time 0.026 seconds

Korea Standard Earthquake Data Format and Analyst Program for Basic Data Processing (한국지진표준 format 제안 및 기본자료처리용 프로그램)

  • 지현철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.36-43
    • /
    • 2000
  • Many formats are used for recording and processing in the research of earthquake seismology and earthquake engineering. It is very difficult to program the Reading and writing algorithm for data processing because fill formats are very different from each other. It is suggested new file format of Korea Standard earthquake data (KSED) two types of ASCII and binary that are read and written easily. The Program package of basic data processing (Analyst) which has function of basic filtering spectrum analysis event gathering phase picking and location is developed In addition this program supports file transformation from another format(Mini SEED OMD K2) to KSED format.

  • PDF

Ambient vibration tests on a 19 - story asymmetric steel building

  • Shakib, H.;Parsaeifard, N.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • Ambient vibration tests were carried out to evaluate the dynamic properties of an asymmetric steel building with semi-rigid connections. The test case has many non-structural elements, constructed in the city of Tehran (Iran). The tests were conducted to obtain natural frequencies, mode shapes and damping ratio of the structure and then Fourier transform were used to analyze the velocity records obtained from the tests. The first and second natural periods of the building were obtained as 1.37 s and 1.28 s through the test and damping ratio for the first mode was calculated as 0.047. However, Natural periods obtained from finite element model have higher values from those gained from ambient vibration. Then the model was calibrated by modeling of the in-fill masonry panels at their exact locations and considering the boundary conditions by modeling two blocks near the block No. 3, but the differences were existed. These differences may be due to some hidden stiffness of nonstructural elements in the low range of elastic behavior, showing the structure stiffer than it is in reality.

Effects of pulse-like nature of forward directivity ground motions on the seismic behavior of steel moment frames

  • Mansouri, Iman;Shahbazi, Shahrokh;Hu, Jong Wan;Moghaddam, Salar Arian
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.1-15
    • /
    • 2019
  • In the structures with high level of ductility, the earthquake energy dissipation in structural components is an important factor that describes their seismic behavior. Since the connection details play a major role in the ductile behavior of structure, in this paper, the seismic response of 3-, 5- and 8-story steel special moment frames (SMFs) is investigated by considering the effects of panel zone modeling and the influence of forward-directivity near-field ground motions. To provide a reasonable comparison, selected records of both near and far-field are used in the nonlinear time-history analysis of models. The results of the comparison of the median maximum inter-story drift under excitation by near-field (NF) records and the far-field (FF) ground motions show that the inter-story drift demands can be obtained 3.47, 4.86 and 5.92 times in 3-, 5- and 8-story structures, respectively, undergoing near-field earthquakes.

Effect of frame connection rigidity on the behavior of infilled steel frames

  • Emami, Sayed Mohammad Motovali;Mohammadi, Majid
    • Earthquakes and Structures
    • /
    • v.19 no.4
    • /
    • pp.227-241
    • /
    • 2020
  • An experimental study has been carried out to investigate the effect of beam to column connection rigidity on the behavior of infilled steel frames. Five half scale, single-story and single-bay specimens, including four infilled frames, as well as, one bare frame, were tested under in-plane lateral cyclic reversal loading. The connections of beam to column for bare frame as well as two infill specimens were rigid, whereas those of others were pinned. For each frame type, two different infill panels were considered: (1) masonry infill, (2) masonry infill strengthened with shotcrete. The experimental results show that the infilled frames with pinned connections have less stiffness, strength and potential of energy dissipation compared to those with rigid connections. Furthermore, the validity of analytical methods proposed in the literature was examined by comparing the experimental data with analytical ones. It is shown that the analytical methods overestimate the stiffness of infilled frame with pinned connections; however, the strength estimation of both infilled frames with rigid and pinned connections is acceptable.

Analysis of Early Instrumental Earthquake data in Korea(1905-1942) (한국의 초기 계기지진 자료 분석(1905-1942))

  • 전명순
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.41-48
    • /
    • 1997
  • In seismology, instrumental data is covering from the end of the last century and showing large uncertainties in earthquake parameters before 1960. The number and quality of seismological stations have been in steady increased over all the past decades of this century, and this development is still going on. In Korea, reliable instrumental data is only available since 1978 from KMA(Korea Meteorological Administration). However instrumental earthquake observation have started since 1905 by Japanese and seven seismic stations were in operation in 1941. We have compiled and analyzed the early instrumental earthquake data between 1905 and 1942. Total 533 events were analyzed and for 60 events, their epicentral coordinates and magnitude were determined

  • PDF

STATUS OF THE PSHA IN KOREA FOR NUCLEAR POWER PLANT SITES

  • Seo, Jeong-Moon;Noh, Myung-Hyun;Chang, Chun-Joong;Yun, Kwan-Hee
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1255-1262
    • /
    • 2009
  • This paper introduces the status of and issues related to the PSHA (Probabilistic Seismic Hazard Analysis) of Korean Nuclear Power Plant sites. PSHA was first introduced to the nuclear industry in the mid-1980s. The Korean PSHA is based on Cornell and accommodates the modem approach for eliciting expertise and statistical treatment. Due to the low seismicity in Korea, large uncertainties exist in the PSHA database including seismic source maps, seismicity parameters of seismic sources, and attenuation formulae. Though research in seismology, geology, and earthquake engineering since the mid-1990s has significantly reduced uncertainties, a considerable amount still exists. Considering the low seismicity of the Korean Peninsula, especially the lack of strong motion data, further reduction will take several decades.

Some results of the airborne imaging radar program in the Philippines

  • Vinluan, Randy John N.;Lopez, Epifanio D.;Salvador, Jerry Hervacio G.;Quiambao, Rowena B.;Lagmay, Alfredo Mahar F.;Crisostomo, Bobby A.;Hilario, Flaviana D.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.381-383
    • /
    • 2003
  • SAR imagery offers a reliable mode of image acquisition over tropical countries for various applications. The Philippines participated in two missions to the Pacific Rim by NASA in 1996 and 2000 that saw the deployment of the AIRSAR instrument. This paper discusses the Philippine experience in the use of polarimetric and interferometric radar datasets for diverse applications, including hazards mapping, geologic and geomorphologic mapping, and land cover mapping. The results are discussed in the light of present efforts at capacity building in remote sensing, attempts at operationalizing the use of SAR for priority applications, and future ambitions in remote sensing.

  • PDF

The effect of gravity and hydrostatic initial stress with variable thermal conductivity on a magneto-fiber-reinforced

  • Said, Samia M.;Othman, Mohamed I.A.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.425-434
    • /
    • 2020
  • The present paper is concerned at investigating the effect of hydrostatic initial stress, gravity and magnetic field in fiber-reinforced thermoelastic solid, with variable thermal conductivity. The formulation of the problem applied in the context of the three-phase-lag model, Green-Naghdi theory with energy dissipation, as well as coupled theory. The exact expressions of the considered variables by using state-space approaches are obtained. Comparisons are performed in the absence and presence of the magnetic field as well as gravity. Also, a comparison was made in the three theories in the absence and presence of variable thermal conductivity as well as hydrostatic initial stress. The study finds applications in composite engineering, geology, seismology, control system and acoustics, exploration of valuable materials beneath the earth's surface.

Base-isolated building with high-damping spring system subjected to near fault earthquakes

  • Tornello, Miguel Eduardo;Sarrazin, Mauricio
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.315-340
    • /
    • 2012
  • There are many types of seismic isolation devices that are being used today for structural control of earthquake response in buildings. The most commonly used are sliding bearings and elastomeric bearings, the latter with or without lead core. An alternative solution is the use of steel springs combined with viscoelastic fluid dampers, which is the case discussed in this paper. An analytical study of a three-story building supported on helical steel springs and viscoelastic fluid dampers, GERB Control System (GCS), subjected to near-fault earthquakes is presented. Several earthquakes records have been obtained by the acceleration network installed in the isolated building and in its non-isolated twin since they were finished. These experimental results are analysed and discussed. The aim is to show that the spring-based system can be an alternative for base isolation of small building located near active faults.

Wave propagation in unbounded elastic domains using the spectral element method: formulation

  • Meza Fajardo, Kristel C.;Papageorgiou, Apostolos S.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.383-411
    • /
    • 2012
  • The objective of the present paper is to review and implement the most recent developments in the Spectral Element Method (SEM), as well as improve aspects of its implementation in the study of wave propagation by numerical simulation in elastic unbounded domains. The classical formulation of the method is reviewed, and the construction of the mass matrix, stiffness matrix and the external force vector is expressed in terms of matrix operations that are familiar to earthquake engineers. To account for the radiation condition at the external boundaries of the domain, a new absorbing boundary condition, based on the Perfectly Matched Layer (PML) is proposed and implemented. The new formulation, referred to as the Multi-Axial Perfectly Matched Layer (M-PML), results from generalizing the classical Perfectly Matched Layer to a medium in which damping profiles are specified in more than one direction.