• Title/Summary/Keyword: energy space

Search Result 3,298, Processing Time 0.031 seconds

Characteistics of Charge Traps and Poling Behavior of Poly (Vinylidene Fluoride)

  • Seo Jeong Won;Ryoo Kun Sang;Lee Hoo Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.4
    • /
    • pp.218-221
    • /
    • 1985
  • Transient charging and discharging currents as well as space charge limited currents have been measured in biaxially stretched poly(vinylidene fluoride) film under various poling fields and temperatures. At low temperatures and short poling times, the I-V characteristics showed shallow trap behavior. When the current values extrapolated to the infinite time, the I-V characteristics indicate that the distribution of the trap energy levels is uniform or very broad. The abnormal suppression of current at higher poling voltages and the high discharge rate observed also in the same voltage range are attributed to the morphological changes due to dipole reorientation.

APPROXIMATION OF ZEROS OF SUM OF MONOTONE MAPPINGS WITH APPLICATIONS TO VARIATIONAL INEQUALITY AND IMAGE RESTORATION PROBLEMS

  • Adamu, Abubakar;Deepho, Jitsupa;Ibrahim, Abdulkarim Hassan;Abubakar, Auwal Bala
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.411-432
    • /
    • 2021
  • In this paper, an inertial Halpern-type forward backward iterative algorithm for approximating solution of a monotone inclusion problem whose solution is also a fixed point of some nonlinear mapping is introduced and studied. Strong convergence theorem is established in a real Hilbert space. Furthermore, our theorem is applied to variational inequality problems, convex minimization problems and image restoration problems. Finally, numerical illustrations are presented to support the main theorem and its applications.

A GN model of thermoelastic interaction in a 2D orthotropic material due to pulse heat flux

  • Hobiny, Aatef;Abbas, Ibrahim A.
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.669-675
    • /
    • 2021
  • A GN model with and without energy dissipations is used to discuss the waves propagation in a two-dimension orthotropic half space by the eigenvalues approach. Using the Laplace-Fourier integral transforms to get the solutions of the problem analytically, the basic formulations of the two-dimension problem are given by matrices-vectors differential forms, which are then solved by the eigenvalues scheme. Numerical techniques are used for the inversion processes of the Laplace-Fourier transform. The results for physical quantities are represented graphically. The numerical outcomes show that the characteristic time of pulse heat flux have great impacts on the studied fields values.

System Effectiveness of AirDam for Natural Ventilation by U-CDS (U-CDS의 자연환기를 위한 AirDam시스템의 효과에 대한 연구)

  • Seungchul, Kim;Boohyun, Shin;Gidae, Oh
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.87-92
    • /
    • 2022
  • Recently, there has been an increasing demand for electric equipment installed on the ground to be installed in an underground space. Accordingly, U-CDS (Underground-Compact Distribution Station) installed in the underground is supplied, and to improve its weak ventilation performance, an Airdam-type structure was applied and the effect was analyzed. As a result, the temperature around the transformer was reduced by up to 9.5 degrees, and the air flow increased by up to 1.17 m/s. Airdam structure can be supplied in the form of various sculptures because it is possible to design freely while maintaining its principle.

Smooth Trajectory Generation Method Using Quadratic Programming Method (이차 계획법을 활용한 부드러운 궤적 생성 방법)

  • Sung, Minchang;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.303-307
    • /
    • 2022
  • This paper proposes a method that can generate a smooth trajectory from the discontinuous trajectory in kinematic, dynamic, and task-space trajectory constraints. The problem is defined as the minimization of kinetic energy, and then the simulation is performed by using the MATLAB. Kinematic and inverse kinematic equations are derived for the simulation of the 6-DOF robotic arm. The simulation results showed that the trajectory of each joint is generated while satisfying the constraints without any discontinuity. There are small errors in the Cartesian trajectory, but unnecessary deceleration and acceleration can be eliminated. In addition, it is possible to quickly switch between the robotic tasks by applying the proposed method.

The effects of circumstellar medium on Type Ic supernova light curve and color evolution and implications for LSQ14efd

  • Jin, Harim;Yoon, Sung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.64.3-64.3
    • /
    • 2019
  • A bright post-breakout emission was detected for a Type Ic supernova (SN Ic) LSQ14efd, which was among the first for SNe Ic. To explain the early-time light curve and color evolution, the effects of the circumstellar medium (CSM) are investigated. Four main parameters, CSM mass, CSM radius, nickel distribution, and explosion energy, are systematically explored in multi-group radiation hydrodynamics simulations, STELLA. Matching the model light curves and color evolution with the observation, we could constrain the parameter space and find out the best fit models. Our results imply that the progenitor suffered a strong mass loss shortly before the explosion and had a massive CSM of ~0.1 M.

  • PDF

On holographic Wilsonian renormalization group of massive scalar theory with its self-interactions in AdS

  • Gitae Kim;Jae-Hyuk Oh
    • Journal of the Korean Physical Society
    • /
    • v.80
    • /
    • pp.30-36
    • /
    • 2022
  • Holographic model of massive scalar field with its self-interaction λϕn in AdS space is able to give a logarithmic scale dependence to marginal multi-trace deformation couplings on its dual conformal field theory, where λ is the self-interaction coupling of the scalar field, ϕ, and n is an integral number. In arXiv:1501.06664, the authors realize this feature by looking at bulk scalar solutions near AdS boundary imposing a specific boundary condition between the coefficients of non-normalizable and normalizable modes of the scalar field excitations. We study the same holographic model to see scale dependence of marginal deformations on the dual conformal field theory by employing completely different method: holographic Wilsonian renormalization group. We solve Hamilton-Jacobi equation derived from the holographic model of massive scalar with λϕn interaction and obtain the solution of marginal multi-trace deformations up to the leading order in λ. It turns out that the solution of marginal multi-trace deformation also presents logarithmic behavior in energy scale near UV region.

Business impact analysis for disaster management of large underground limestone mine (석회석광산 지하대형공간의 재난관리를 위한 업무영향력 분석)

  • Lee, Seong-Min;Kim, Sun-Myung;Lee, Yeon-Hee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.6
    • /
    • pp.613-623
    • /
    • 2013
  • As Limestone mines have been operated with various environmental, societal and managemental problems depending on their characteristics and developing methods, many great efforts have been applied to solve these problems. Installing the mining facilities underground is one of the successful efforts to keep the sustainable limestone mine development. This effort could reduce these problems. However, unfortunately it made an side effect of constructing a large underground space in mining site. Moreover, this space caused a necessity of various disaster managements for the safety of workers and facilities. This study introduces the priority list of a limestone mining process if there are disasters in underground mining site. This result is coming from the risk assessment and business impact analysis on survey data which were obtained from the miners of that particular limestone mine. According to the result, the highest risk is 'disregard of safety guidelines in crushing & classifier process'. The result also shows the highest priority business, above all things, is 'a pit linked work of in & out process'.

Numerical analysis of solar heat gain on slim-type double-skin window systems - Heat transfer phenomena with opening of windows and vent slot in summer condition - (전산유체 해석을 통한 슬림형 이중외피 창호의 태양열 취득량 분석 - 높은 태양고도 및 하절기 냉방조건에서의 자연환기구 적용 및 창문 조절 방식별 비교 -)

  • Park, Ji-Ho;Oh, Eun-Joo;Cho, Dong-Woo;Cho, Kyung-Joo;Yu, Jung-Yeon
    • KIEAE Journal
    • /
    • v.17 no.1
    • /
    • pp.69-75
    • /
    • 2017
  • Purpose: Heat transfer analysis of recently developed 'slim type double-skin system window' were presented. This window system is designed for curtain wall type façade that main energy loss factor of recent elegant buildings. And the double skin system is the dual window system integrated with inner shading component, enclosed gap space made by two windows when both windows were closed and shading component effectively reflect and terminate solar radiation from outdoor. Usually double-skin system requires much more space than normal window systems but this development has limited by 270mm, facilitated for curtain wall façade buildings. In this study, we estimated thermophysical phenomena of our double-skin curtain wall system window with solar load conditions at the summer season. Method: A fully 3-Dimentional analysis adopted for flow and convective and radiative heat transfer. The commercial CFD package were used to model the surface to surface radiation for opaque solid region of windows' frame, transparent glass, fluid region at inside of double-skin and indoor/outdoor environments. Result: Steep angle of solar incident occur at solar summer conditions. And this steep solar ray cause direct heat absorption from outside of frame surface rather than transmitted through the glass. Moreover, reflection effect of shading unit inside at the double-skin window system was nearly disappeared because of solar incident angle. With this circumstances, double-skin window system effectively cuts the heat transfer from outdoor to indoor due to separation of air space between outdoor and indoor with inner space of double-skin window system.

THE INFRARED MEDIUM-DEEP SURVEY. V. A NEW SELECTION STRATEGY FOR QUASARS AT z > 5 BASED ON MEDIUM-BAND OBSERVATIONS WITH SQUEAN

  • JEON, YISEUL;IM, MYUNGSHIN;PAK, SOOJONG;HYUN, MINHEE;KIM, SANGHYUK;KIM, YONGJUNG;LEE, HYE-IN;PARK, WOOJIN
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.1
    • /
    • pp.25-35
    • /
    • 2016
  • Multiple color selection techniques are successful in identifying quasars from wide-field broadband imaging survey data. Among the quasars that have been discovered so far, however, there is a redshift gap at 5 ≲ z ≲ 5.7 due to the limitations of filter sets in previous studies. In this work, we present a new selection technique of high redshift quasars using a sequence of medium-band filters: nine filters with central wavelengths from 625 to 1025 nm and bandwidths of 50 nm. Photometry with these medium-bands traces the spectral energy distribution (SED) of a source, similar to spectroscopy with resolution R ~ 15. By conducting medium-band observations of high redshift quasars at 4.7 ≤ z ≤ 6.0 and brown dwarfs (the main contaminants in high redshift quasar selection) using the SED camera for QUasars in EArly uNiverse (SQUEAN) on the 2.1-m telescope at the McDonald Observatory, we show that these medium-band filters are superior to multi-color broad-band color section in separating high redshift quasars from brown dwarfs. In addition, we show that redshifts of high redshift quasars can be determined to an accuracy of Δz/(1 + z) = 0.002 - 0.026. The selection technique can be extended to z ~ 7, suggesting that the medium-band observation can be powerful in identifying quasars even at the re-ionization epoch.