DOI QR코드

DOI QR Code

Characteistics of Charge Traps and Poling Behavior of Poly (Vinylidene Fluoride)

  • Published : 1985.08.20

Abstract

Transient charging and discharging currents as well as space charge limited currents have been measured in biaxially stretched poly(vinylidene fluoride) film under various poling fields and temperatures. At low temperatures and short poling times, the I-V characteristics showed shallow trap behavior. When the current values extrapolated to the infinite time, the I-V characteristics indicate that the distribution of the trap energy levels is uniform or very broad. The abnormal suppression of current at higher poling voltages and the high discharge rate observed also in the same voltage range are attributed to the morphological changes due to dipole reorientation.

Keywords

References

  1. Japan J. Appl. Phys. v.8 H. Kawai
  2. J. Polym. Sci., A-2 v.9 K. Nakamura;Wada
  3. Appl. Phys. Lett. v.18 J. G. Bergman, Jr.;J. H. McFee;G. R. Crane
  4. J. Appl. Phys. v.42 A. M. Glass;J. H. McFee;J. G. Bergman, Jr.
  5. J. Appl. Polym. Sci. v.12 T. Furukawa;Y. Uematsu;K. Asakawa;Y. Wada
  6. Ph.D. Dissertation, Temple University Pyroelectricity of Homo-and Co-polymeric Vinylidene Fluoride and Blends H. Lee
  7. Macromolecules v.11 H. Lee;R. E. Salomon;M. M. Labes
  8. J. Appl. Phys. v.11 D. K. Das-Gupta;K. Doughty
  9. Macromolecules v.11 N. Naegele;D. Y. Yoon;M. G. Broadhurst
  10. J. Appl. Phys. v.51 Dvey-Aharon;P. L. Taylor
  11. Ferroelectrics v.32 N. Takahashi;A. Odajima
  12. J. Polym. Sci., Polym. Phys. Ed. v.18 S. S. Bamji;K. J. Kao;M. M. Perlman
  13. Jap. J. Appl. Phys. v.20 N. Takahashi;A. Odajima
  14. J. Appl. Phys. v.49 M. K. Das-Gupta;K. Doughty
  15. J. Appl. Phys. v.48 M. Tamura;S. Hgiwara;S. Matsumoto;N. Ono
  16. J. Appl. Phys. v.49 G. T. Davis;J. E. McKinney;M. G. Broadhurst;S. C. Roth
  17. J. Appl. Phys. v.51 J. I. Scheinbeim;K. T. Chung;K. D. Pae;B. A. Newman
  18. J. Appl. Phys. v.51 J. I. Scheinbeim;C. H. Yoon;K. D. Pae;B. A. Newman
  19. J. Appl. Phys. v.54 T. Furukawa;Date;G. E. Johnson
  20. Macromolecules v.16 B. A. Newman;J. I. Scheinbeim
  21. Macromolecules v.17 P. Cebe;D. T. Grubb
  22. Macromolecules v.17 K. Tashiro;M. Nakamura;M. Kobayashi;Y. Chatani;H. Tadokoro
  23. J. Appl. Phys. v.53 T. Yamada
  24. Macomolecules v.17 J. McBriety;D. C. Douglass;T. Furukawa
  25. Macromolecules v.17 T. Furukawa;M. Ohuchi;A. Chiba;M. Date
  26. J. Appl. Phys. v.50 H. Lee;R. E. Salomon;M. M. Labes
  27. Appl. Phys. Lett. v.26 A. I. Baise;H. Lee;B. K. Oh;R. E. Salomon;M. M. Labes
  28. J. Appl. Phys. v.48 M. H. Litt;C. Hsu;P. Basu
  29. Polymer J. v.12 S. Miyata;M. Yoshikawa;S. Tasaka;M. Ko
  30. J. Appl. Phys. v.48 K. Takahashi;H. Lee;R. E. Salomon;M. M. Labes
  31. J. Polym. Sci., Polym. Phys. Ed. v.13 N. Murayama
  32. J. Polym. Sci., Polym. Phys. Ed. v.41 N. Murayama;H. Hashizume
  33. J. Polym. Sci. Part D., Macromolecular Rev. v.4 A. Szymanski
  34. J. Appl. Phys. v.36 J. Lindmayer
  35. J. Appl. Phys. v.49 J. Vanderschueren;A. Linkens
  36. Phys. Rev. Lett. v.9 A. Van Roggen
  37. Current Injection in Solids M. A. Lampert;P. Mark
  38. Solid State Electronics v.6 R. S. Muller
  39. Solid State Electronics v.15 W. Hwang;K. C. Kao
  40. Aust. J. Chem. v.31 J. s. Bonham
  41. Phys. Rev. v.97 A. Rose
  42. Koll. Z. Polymere v.215 G. Setter