• Title/Summary/Keyword: energy dissipations

Search Result 21, Processing Time 0.029 seconds

EFFECT OF POROSITY ON THE TRANSIENT MHD GENERALIZED COUETTE FLOW WITH HEAT TRANSFER IN THE PRESENCE OF HEAT SOURCE AND UNIFORM SUCTION AND INJECTION

  • Attia, Hazem Ali;Ewis, Karem Mahmoud;Awad-Allah, Nabil Ahmed
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.2
    • /
    • pp.125-135
    • /
    • 2012
  • The transient magnetohydrodynamic (MHD) generalized Couette flow with heat transfer through a porous medium of an electrically conducting, viscous, incompressible fluid bounded by two parallel insulating porous plates is studied in the presence of uniform suction and injection and a heat source considering the Hall effect. A uniform and constant pressure gradient is imposed in the axial direction and an externally applied uniform magnetic field as well as a uniform suction and injection are applied in the direction perpendicular to the plates. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the Hall current, the porosity of the medium and the uniform suction and injection on both the velocity and temperature distributions is investigated.

A GN model of thermoelastic interaction in a 2D orthotropic material due to pulse heat flux

  • Hobiny, Aatef;Abbas, Ibrahim A.
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.669-675
    • /
    • 2021
  • A GN model with and without energy dissipations is used to discuss the waves propagation in a two-dimension orthotropic half space by the eigenvalues approach. Using the Laplace-Fourier integral transforms to get the solutions of the problem analytically, the basic formulations of the two-dimension problem are given by matrices-vectors differential forms, which are then solved by the eigenvalues scheme. Numerical techniques are used for the inversion processes of the Laplace-Fourier transform. The results for physical quantities are represented graphically. The numerical outcomes show that the characteristic time of pulse heat flux have great impacts on the studied fields values.

Dissipation of energy in steel frames with PR connections

  • Reyes-Salazar, Alfredo;Haldar, Achintya
    • Structural Engineering and Mechanics
    • /
    • v.9 no.3
    • /
    • pp.241-256
    • /
    • 2000
  • The major sources of energy dissipation in steel frames with partially restrained (PR) connections are evaluated. Available experimental results are used to verify the mathematical model used in this study. The verified model is then used to quantify the energy dissipation in PR connections due to hysteretic behavior, due to viscous damping and at plastic hinges if they are formed. Observations are made for two load conditions: a sinusoidal load applied at the top of the frame, and a sinusoidal ground acceleration applied at the base of the frame representing a seismic loading condition. This analytical study confirms the general behavior, observed during experimental investigations, that PR connections reduce the overall stiffness of frames, but add a major source of energy dissipation. As the connections become stiffer, the contribution of PR connections in dissipating energy becomes less significant. A connection with a T ratio (representing its stiffness) of at least 0.9 should not be considered as fully restrained as is commonly assumed, since the energy dissipation characteristics are different. The flexibility of PR connections alters the fundamental frequency of the frame. Depending on the situation, it may bring the frame closer to or further from the resonance condition. If the frame approaches the resonance condition, the effect of damping is expected to be very important. However, if the frame moves away from the resonance condition, the energy dissipation at the PR connections is expected to be significant with an increase in the deformation of the frame, particularly for low damping values. For low damping values, the dissipation of energy at plastic hinges is comparable to that due to viscous damping, and increases as the frame approaches failure. For the range of parameters considered in this study, the energy dissipations at the PR connections and at the plastic hinges are of the same order of magnitude. The study quantitatively confirms the general observations made in experimental investigations for steel frames with PR connections; however, proper consideration of the stiffness of PR connections and other dynamic properties is essential in predicting the dynamic behavior.

Lateral impact behaviour of concrete-filled steel tubes with localised pitting corrosion

  • Gen Li;Chao Hou;Luming Shen;Chuan-Chuan Hou
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.615-631
    • /
    • 2023
  • Steel corrosion induces structural deterioration of concrete-filled steel tubes (CFSTs), and any potential extreme action on a corroded CFST would pose a severe threat. This paper presents a comprehensive investigation on the lateral impact behaviour of CFSTs suffering from localised pitting corrosion damage. A refined finite element analysis model is developed for the simulation of locally corroded CFSTs subjected to lateral impact loads, which takes into account the strain rate effects on concrete and steel materials as well as the random nature of corrosion pits, i.e., the distribution patterns and the geometric characteristics. Full-range nonlinear analysis on the lateral impact behaviour in terms of loading and deforming time-history relations, nonlinear material stresses, composite actions, and energy dissipations are presented for CFSTs with no corrosion, uniform corrosion and pitting corrosion, respectively. Localised pitting corrosion is found to pose a more severe deterioration on the lateral impact behaviour of CFSTs due to the plastic deformation concentration, the weakened confinement and the reduction in energy absorption capacity of the steel tube. An extended parametric study is then carried out to identify the influence of the key parameters on the lateral impact behaviour of CFSTs with localised pitting corrosion. Finally, simplified design methods considering the features of pitting corrosion are proposed to predict the dynamic flexural capacity of locally pitted CFSTs subjected to lateral impact loads, and reasonable accuracy is obtained.

Experimental Study on Energy Transmission Rate of Horizontal Dual Plate by Random Wave System (수평형(水平型) 이열(二列) 조합판(組合板)의 투과율(透過率) 산정(算定)을 위한 실험적(實驗的) 연구(硏究))

  • Kweon, Hyuck-Min;Kim, Young-Hak;Kee, Sung Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.421-428
    • /
    • 2008
  • For last decades, the rapid coastal erosion process spreading along Korean peninsular has become a nuisance especially for tourism and local economy. Global warming and sea-level rise demand persistently new coastal protection strategies against the conventional methods using armored structures. In a view of this, Kweon et al. (2007) has proposed a new type of horizontal steel plates for an ideal candidate as eco-friendly detached breakwater systems for global warming era. The breakwater is composed of piles and horizontal porous plates that was devised for the optimized blockage effects and wave energy dissipations. This system provides outstanding performances as wave barrier and added advantages such as a rapid installation, an easy relocation, a perfect water circulation for the stagnation of pollutions in sheltered regions. The present experimental study focuses on the performance evaluations of the proposed system in wind wave conditions as a wave dissipator and reflector. The reflection, transmission, and energy dissipation of the random waves has been discussed in detail based on a newly proposed relation between wave steepness and a plate width normalized by wave length that are major factors affecting the wave transmission.

Collapse mechanism for deep tunnel subjected to seepage force in layered soils

  • Yang, X.L.;Yan, R.M.
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.741-756
    • /
    • 2015
  • The prediction of impending collapse of deep tunnel is one of the most difficult problems. Collapse mechanism of deep tunnel in layered soils is derived using a new curved failure mechanism within the framework of upper bound theorem, and effects of seepage forces are considered. Nonlinear failure criterion is adopted in the present analysis, and the possible collapse shape of deep tunnel in the layered soils is discussed in this paper. In the layered soils, the internal energy dissipations along velocity discontinuity are calculated, and the external work rates are produced by weight, seepage forces and supporting pressure. With upper bound theorem of limit analysis, two different curve functions are proposed for the two different soil stratums. The specific shape of collapse surface is discussed, using the proposed curve functions. Effects of nonlinear coefficient, initial cohesion, pore water pressure and unit weight on potential collapse are analyzed. According to the numerical results, with the nonlinear coefficient increase, the shape of collapse block will increase. With initial cohesion of the upper soil increase, the shape of failure block will be flat, and with the lower soil improving, the size of collapsing will be large. Furthermore, the shape of collapsing will decrease with the unit weight decrease.

Analysis of Wave Responses in Harbor Using Boundary Damper Techniques (경계 damper를 이용한 항만 파낭응답 해석)

  • 정원무;박우선
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.1
    • /
    • pp.39-44
    • /
    • 1993
  • This paper is concerned with developing a finite element model incorporating boundary damper techniques which is applicable to the prediction of wave agitations in harbors. Based on the linear wave theory, a mild-slope equation is used. In order to consider the wave energy dissipations on solid boundary. the partial reflecting boundary condition is introduced. Radiating boundary condition is modeled by using tile second-order boundary damper developed by Bando et al. (1984). The near field region in harbor is discretized using 8-noded isoparametric elements, the boundary conditions are presented using 3-noded line elements. The numerical model is applied to a fully open rectangular harbor to prove its validity. Numerical experiments are also performed to investigate the effects of the wave reflection coefficients of solid boundary and the types of the dampers.

  • PDF

A Window-Based DVS Algorithm for MPEG Player (MPEG 동영상 재생기를 위한 윈도우 기반 동적 전압조절 알고리즘)

  • Seo, Young-Sun;Park, Kyung-Hwan;Baek, Yong-Gyu;Cho, Jin-Sung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.11
    • /
    • pp.517-526
    • /
    • 2008
  • As the functionality of portable devices arc being enhanced and the performance is being greatly improved, power dissipations of battery driven portable devices are being increased. So, an efficient power management for reducing their power consumption is needed. In this paper, we propose a window-based DVS algorithm for MPEG Player. The proposed algorithm maintains the recently frame information and execution time received from MPEG player in window queue and dynamically adjusts (frequency, voltage) level based on window queue information. Our algorithm can be implemented in the common multimedia player as a module. We employed well-known MPlayer for the measurement of performance. The experimental result shows that the proposed algorithm reduces energy consumption by 56% on maximal performance.

Study on the Electrode Design for an Advanced Structure of Vertical LED (Via-hole 구조의 n-접합을 갖는 수직형 발광 다이오드 전극 설계에 관한 연구)

  • Park, Jun-Beom;Park, Hyung-Jo;Jeong, Tak;Kang, Sung-Ju;Ha, Jun-Seok;Leem, See-Jong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.71-76
    • /
    • 2015
  • Recently, light emitting diodes (LEDs) have been studied to improve their efficiencies for the uses in various fields. Particularly in the aspect of chip structure, via hole type vertical LED chip is developed for improvement of light output power, and heat dissipations. However, current vertical type LEDs have still drawback, which is current concentration around the n-contact holes. In this research, to solve this phenomenon, we introduced isolation layer under n-contact electrodes. With this sub-electrode, even though the active area was decreased by about 2.7% compared with conventional via-hole type vertical LED, we could decrease the forward voltage by 0.2 V and wall-plug efficiency was improved approximately 4.2%. This is owing to uniform current flow through the area of n-contact.

Seasonal Variations of Water Mass Distributions and Their Causes in the Yellow Sea, the East China Sea and the Adjacent Seas of Cheju Island (황해, 동지나해와 제주도 주변해역에서의 해수분포의 계절변화와 그 원인)

  • PANG Ig-Chan;RHO Hong-Kil;KIM Tae-Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.2
    • /
    • pp.151-163
    • /
    • 1992
  • Seasonal variations of water mass distributions in the Yellow Sea, the East China Sea, and the adjecent seas of Cehju Island, are investigated. A common seasonal variation over these whole areas is shown. Warm and saline waters are extended northwestward into the Yellow Sea in winter and retreated back southeastward to the East China Sea in summer. Barotropic numerical model results suggest that monsoon winds could drive such seasonal variations. Upwind flows play an important role in the processes. In the numerical model results, upwind flows are shifted to China. It is due to energy dissipations by complicated coast lines and shallow bottom topographies in the northern part of the Yellow Sea. The shifted routes of upwind flows agrees well with that of the southward extensions of the Yellow sea Bottom Cold Waters in summer.

  • PDF