• Title/Summary/Keyword: energy dispersive spectroscopy(EDS)

Search Result 431, Processing Time 0.042 seconds

Ion release and Biocompatibility of Ti-6Al-4V Alloys for Dental application

  • Kang, Jung-In;Son, Mee-Kyoung;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.303-303
    • /
    • 2015
  • In order to investigate ion release and biocompatibility of Ti-6Al-4V dental alloy by electrochemical corrosion test and MTT assay, commercial Ti-6Al-4V alloy rod (99.99% Ti, USA, Co) were used in the study. The microstructure of the alloys was examined by optical microscopy (OM), Field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), MTT assay, and corrosion test. From the polarization curves, very low current densities were obtained for Ti-6Al-4V alloys, indicating a formation of stable passive layer.

  • PDF

Zn/HA Coating on the Ti-xNb Alloys after Nanotube Formation for Dental Implant

  • Byeon, In-Seop;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.139-140
    • /
    • 2015
  • Zn/HA coating on the Ti-xNb alloys after nanotube formation for dental lmplant was researched using various experimental methods. Due to g ood biocompatibility and osteoconductivity, hydroxyapatite (HA) coating s on metallic biomedical implants were widely employed in orthopedic and dental applications. To improve biocompatibilities, Zinc (Zn) plays very important roles in the bone formation and immune reg ulations. The nanotube formed Zn-HA films were characterized with X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS).

  • PDF

Study of PEO Process for Al 7075 and Effect of additives (알루미늄 7075 합금의 PEO 처리 기술 및 첨가제 영향 분석)

  • Jin, Yun-Ho;Yang, Jae-Kyo
    • Journal of Surface Science and Engineering
    • /
    • v.53 no.2
    • /
    • pp.53-58
    • /
    • 2020
  • In this study, we developed plasma electrolytic oxidation (PEO) process for aluminum 7075 alloy to improve the corrosion and mechanical properties. The electrolyte consists of potassium hydroxide and sodium silicate. Additionally, sodium stannate was added into the electrolyte to investigate its effect on PEO film formation. Titanium was used as the counter electrode. Plasma generation voltage reduced from 300V to 150 V by adding 4 g/L of sodium stannate. The thin oxide films were observed by SEM(Scanning Electron Microscopy)/EDS (Energy Dispersive Spectroscopy) for quantitative and qualitative analyses. XRD (X-ray diffraction) and XRF (X-ray Fluorescences) analyses were also carried out to identify oxide layer on aluminum 7075 surface. Vicker's hardness test was performed on the PEO-treated aluminum 7075 surface.

Synthesis of Carbon Nanowalls by Microwave PECVD for Battery Electrode

  • Kim, Sung Yun;Shin, Seung Kwon;Kim, Hyungchul;Jung, Yeun-Ho;Kang, Hyunil;Choi, Won Seok;Kweon, Gi Back
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.198-200
    • /
    • 2015
  • The microwave plasma enhanced chemical vapor deposition (PECVD) system was used to grow a carbon nanowall (CNW) on a silicon (Si) substrate with hydrogen (H2) and methane (CH4) gases. To find the growth mechanism of CNW, we increased the growth time of CNW from 5 to 30 min. The vertical and surficial conditions of the grown CNWs according to growth time were characterized by field emission scanning electron microscopy (FE-SEM). Energy dispersive spectroscopy (EDS) measurements showed that the CNWs consisted solely of carbon.

Synthesis of Fe-TiB2 Nanocomposite by a combination of mechanical activation and heat treatment

  • Hyunh, Xuan Khoa;Nguyen, Quoc Tuan;Kim, Ji-Sun;Gang, Tae-Hun;Kim, Jin-Cheon;Gwon, Yeong-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.91.2-91.2
    • /
    • 2012
  • The TiB2-reinforced iron matrix nanocomposite (Fe-TiB2) was in-situ fabricated from titanium hydride (TiH2) and iron boride (FeB) powders by a simple and cost-effective process that combines the mechanical activation (MA) and a subsequent heat treatment (HT). Effect of milling factors and synthesized temperatures on the formation of the nanocomposite were presented and discussed. A differential thermal analyser (DSC-TG) was employed for examination of thermal behavior of MAed powders. Phases of the nanocomposite were confirmed by X-ray diffraction analysis (XRD). The morphologies and microstructure of nanocomposite were investigated by field emission-scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS). Phase composition and distribution were analyzed by electron probe X-ray microanalysis (EPMA). Results showed that TiB2 particles formed in nanoscale were uniformly distributed in alloyed Fe matrix.

  • PDF

Corrosion Behavior of Nickel-Plated Alloy 600 in High Temperature Water

  • Kim, Ji Hyun;Hwang, Il Soon
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.61-67
    • /
    • 2008
  • In this paper, electrochemical and microstructural characteristics of nickel-plated Alloy 600 were investigated in order to identify the performance of electroless Ni-plating on Alloy 600 in high-temperature aqueous condition with the comparison of electrolytic nickel-plating. For high temperature corrosion test of nickel-plated Alloy 600, specimens were exposed for 770 hours to typical PWR primary water condition. During the test, open circuit potentials (OCP's) of all specimens were measured using a reference electrode. Also, resistance to flow accelerated corrosion (FAC) test was examined in order to check the durability of plated layers in high-velocity flow environment at high temperature. After exposures to high flow rate aqueous condition, the integrity of surfaces was confirmed by using both scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). For the field application, a remote process for electroless nickel-plating was demonstrated using a plate specimen with narrow gap on a laboratory scale. Finally, a practical seal design was suggested for more convenient application.

I-V Characteristics of $KNO_3$ Electrolyte for ECMP Application (ECMP 적용을 위한 $KNO_3$ 전해액의 I-V 특성 고찰)

  • Han, Sang-Jun;Lee, Young-Kyun;Park, Sung-Woo;Lee, Woo-Sun;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.115-115
    • /
    • 2008
  • 본 논문에서는 최적화된 ECMP 공정을 위하여 I-V 특성 곡선과 CV법을 이용하여 패시베이션 막의 active, passive, transient, trans-passive 영역의 전기화학적 특성을 알아보았으며, Cu막의 표면 형상을 Scanning Electron Microscopy (SEM) 측정과 금속 화학적 조성을 Energy Dispersive Spectroscopy (EDS) 분석을 통해 분석하였다.

  • PDF

A Study on the electrochemical mechanism of $NaNO_3$ electrolyte ($NaNO_3$ 전해액의 전기화학적 메커니즘 연구)

  • Lee, Young-Kyun;Han, Sang-Jun;Park, Sung-Woo;Lee, Woo-Sun;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.116-116
    • /
    • 2008
  • Cu CMP 공정시 높은 압력으로 인하여 low-k 유전체막에 손실을 주며, 디싱과 에로젼 같은 문제점을 해결하기 위하여 기존의 CMP에 전기화학을 결합시킴으로서 낮은 하력에서의 Cu 평탄화를 달성 할 수 있는 ECMP(Electrochemical Mechanical Polishing)기술이 필요하게 되었다. 본 논문에서는 $NaNO_3$ 전해액이 Cu 표면에 미치는 영향을 SEM (Scanning electron microscopy), EDS (Energy Dispersive Spectroscopy), XRD(X-ray Diffraction)를 통하여 전기화학적 특성을 비교 분석하였다.

  • PDF

A Study on Structural and Dielectric Properties of the (Ba,Sr)TiO$_3$ Thin Films Prepared by Laser Ablation (레이저 어블레이션법으로 제작될 (Ba, Sr)TiO$_3$ 박막의 구조 및 유전특성에 관한 연구)

  • 주학림;김성구;장낙원;마석범;백동수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.122-125
    • /
    • 1999
  • (Ba$_{0.6}$Sr$_{0.4}$)TiO$_3$(BST) thin films were fabricated with different deposition temperature and oxygen pressure by Pulsed Laser Deposition(PLD). Energy Dispersive Spectroscopy(EDS) proved that BST thin films prepared by PLD have almost the same stoichiometric composition as the BST target materials. This BST thin films were fully crystallized at $650^{\circ}C$, 300mTorr oxygen pressure and showed a maximum dielectric constant value of $\varepsilon$$_{t}$=684 and dielectric loss was 0.01 at 75$0^{\circ}C$, 300mTorr oxygen pressure.ssure.

  • PDF

Evaluation of Failure Mechanism of Flexible CIGS Solar Cell Exposed to High Temperature and Humid Atmosphere (플렉서블 CIGS 태양전지의 고온고습 환경 고장 기구 분석)

  • Kim, Hyeok-Soo;Byeon, Jai-Won
    • Journal of Applied Reliability
    • /
    • v.16 no.1
    • /
    • pp.41-47
    • /
    • 2016
  • Purpose: The purpose of this study was to evaluate electrical and structural degradation of flexible CIGS sollar cell exposed to high temperature and humid atmosphere. Method: Accelerated degradation was performed for various time under $85^{\circ}C/85%RH$ and then electrical and structural properties were analyzed by 4-point probe method, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Results: Sheet resistance of the top ITO layer increased with exposure time to the high temperature and humid atmosphere. Blunting of the protrusion morphology of ITO layer was observed for the degraded specimen, while no phase change was detected by XRD. Oxygen was detected at the edge area after 300 hours of exposure. Conclusion: Increase in electrical resistance of the degraded CIGS solar cell under high temperature and humid environment was attribute to the oxygen or water absorption.