Ion release and Biocompatibility of Ti-6Al-4V Alloys for Dental application Jung-In Kang^{a*}, Mee-Kyoung Son^a, Han-Cheol Choe^b ^{a*}Department of Dental Prosthodontics, School of Dentistry, Chosun University, Gwangju, Korea ^b Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju, Korea (*Corresponding author E-mail: hcchoe@chosun.ac.kr) **Abstract:** In order to investigate ion release and biocompatibility of Ti-6Al-4V dental alloy by electrochemical corrosion test and MTT assay, commercial Ti-6Al-4V alloy rod (99.99% Ti, USA, Co) were used in the study. The microstructure of the alloys was examined by optical microscopy (OM), Field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), MTT assay, and corrosion test. From the polarization curves, very low current densities were obtained for Ti-6Al-4V alloys, indicating a formation of stable passive layer. ### 1. Introduction Titanium and titanium alloys continue to be the best choice as orthopedic and dental implant materials due to their excellent biocompatibility and mechanical properties. Among the different titanium alloys (α , $\alpha + \beta$, β), the $\alpha + \beta$ type Ti-6Al-4V alloy is the most employed biomaterial with proven clinical success. Usually $\alpha + \beta$ microstructure of the alloy is particularly important when a greater modulus of elasticity is in need, such as bone plates. ## 2. Experimental Commercial Ti-6Al-4V alloy rod(99.99% Ti, USA, Co) were used in the study. Samples were divided into 2 group, one group sample was raw rod type wire (10mm diameter and 4 mm thickness), and the other group was machined implant supplied by KJ Meditech, Co. Each sample was cut and prepared using a high-speed diamond cutting machine with 2000 rpm speed, followed by polishing with 3 μ m Al₂O₃paste. The electrochemical potentiodynamic polarization studies for corrosion behaviors were carried out in 0.9% NaCl solution at 36.5 \pm 1° C using a potentiostat. A conventional three-electrode system with high-density graphite as counter electrode and saturated calomel electrode (SCE) as reference was used. The electrolyte was deaerated using high-purity Ar gas for 30 min before starting the experiment. Deaeration was continued at a uniform rate during the experiment. The potentiodynamic polarization test with a scan rate of 1.67 mV s-1 was carried out from -1500 mV to 2000 mV. The crystallinity and morphology of surface were examined by OM, FE-SEM, EDS, and XRD. Briefly, cells (1 x 10⁵ per well) were seeded into 24-well plates. After drug treatment, 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) solution (5 mg/mL in PBS) was added, and cells were incubated at 370° C for 3h. The culture medium was then aspirated, and acid isopropanol (0.04 mol/L hydrogen chloride (HCl) in isopropanol) was added to dissolve the dark blue crystals. The optical density value of the dissolved solute was then measured using a Microplate Autoreader (Bio-Tek Instruments Inc., Winooski, VT) at a wavelength of 540 nm. # 3. Conclusion The microstructure of Ti-6Al-4V alloys showed α + β phase structure. Ti-6Al-4V alloys were improved in the case of machined surface. From the polarization curves, very low current densities were obtained for Ti-6Al-4V alloys, indicating a formation of stable passive layer. (This research was supported by Innovation and Creativity through the Ministry of Education and National Research Foundation of Korea 2015H1C1A1035241:hcchoe@chosun.ac.kr). ### References - 1. V.S. Saji, Y.H. Jeong, H.C. Choe, Corrosion behavior of Ti-13Nb-13Zr and Ti-6Al-4V alloys for biomaterial application. CORROSION SCIENCE AND TECHNOLOGY, 9 (2010), 12. - C.G. Nava-Dino, C. López-Meléndez, R. G. Bautista-Margulis, M. A. Neri-Flores, J.G. Chacón-Nava, S.D de la Torre, J.G. Gonzalez-Rodriguez, A. Martínez-Villafañe. Corrosion behavior of Ti-6Al-4V alloys. Int. J. Electrochem. Sci, 7 (2012), 2389.