• Title/Summary/Keyword: energy cost saving

Search Result 444, Processing Time 0.026 seconds

Efficient Virtual Machine Resource Management for Media Cloud Computing

  • Hassan, Mohammad Mehedi;Song, Biao;Almogren, Ahmad;Hossain, M. Shamim;Alamri, Atif;Alnuem, Mohammed;Monowar, Muhammad Mostafa;Hossain, M. Anwar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1567-1587
    • /
    • 2014
  • Virtual Machine (VM) resource management is crucial to satisfy the Quality of Service (QoS) demands of various multimedia services in a media cloud platform. To this end, this paper presents a VM resource allocation model that dynamically and optimally utilizes VM resources to satisfy QoS requirements of media-rich cloud services or applications. It additionally maintains high system utilization by avoiding the over-provisioning of VM resources to services or applications. The objective is to 1) minimize the number of physical machines for cost reduction and energy saving; 2) control the processing delay of media services to improve response time; and 3) achieve load balancing or overall utilization of physical resources. The proposed VM allocation is mapped into the multidimensional bin-packing problem, which is NP-complete. To solve this problem, we have designed a Mixed Integer Linear Programming (MILP) model, as well as heuristics for quantitatively optimizing the VM allocation. The simulation results show that our scheme outperforms the existing VM allocation schemes in a media cloud environment, in terms of cost reduction, response time reduction and QoS guarantee.

Optimal dimension design of a hatch cover for lightening a bulk carrier

  • Um, Tae-Sub;Roh, Myung-Il
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.270-287
    • /
    • 2015
  • According to the increase of the operating cost and material cost of a ship due to the change of international oil price, a demand for the lightening of the ship weight is being made from various parties such as shipping companies, ship owners, and shipyards. To satisfy such demand, many studies for a light ship are being made. As one of them, an optimal design method of an existing hull structure, that is, a method for lightening the ship weight based on the optimization technique was proposed in this study. For this, we selected a hatch cover of a bulk carrier as an optimization target and formulated an optimization problem in order to determine optimal principal dimensions of the hatch cover for lightening the bulk carrier. Some dimensions representing the shape of the hatch cover were selected as design variables and some design considerations related to the maximum stress, maximum deflection, and geometry of the hatch cover were selected as constraints. In addition, the minimization of the weight of the hatch cover was selected as an objective function. To solve this optimization problem, we developed an optimization program based on the Sequential Quadratic Programming (SQP) using C++ programming language. To evaluate the applicability of the developed program, it was applied to a problem for finding optimal principal dimensions of the hatch cover of a deadweight 180,000 ton bulk carrier. The result shows that the developed program can decrease the hatch cover's weight by about 8.5%. Thus, this study will be able to contribute to make energy saving and environment-friendly ship in shipyard.

Design of an Infrared Multi-touch Screen Controller using Stereo Vision (스테레오 비전을 이용한 저전력 적외선 멀티 터치스크린 컨트롤러의 설계)

  • Jung, Sung-Wan;Kwon, Oh-Jun;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.68-76
    • /
    • 2010
  • Touch-enabled technology is increasingly being accepted as a main communication interface between human and computers. However, conventional touchscreen technologies, such as resistive overlay, capacitive overlay, and SAW(Surface Acoustic Wave), are not cost-effective for large screens. As an alternative to the conventional methods, we introduce a newly emerging method, an optical imaging touchscreen which is much simpler and more cost-effective. Despite its attractive benefits, optical imaging touchscreen has to overcome some problems, such as heavy computational complexity, intermittent ghost points, and over-sensitivity, to be commercially used. Therefore, we designed a hardware controller for signal processing and multi-coordinate computation, and proposed Infrared-blocked DA(Dark Area) manipulation as a solution. While the entire optical touch control took 34ms with a 32-bit microprocessor, the designed hardware controller can manage 2 valid coordinates at 200fps and also reduce energy consumption of infrared diodes from 1.8Wh to 0.0072Wh.

Application Effect of Heating Energy Saving Package on Venlo Type Glasshouse of Paprika Cultivation (파프리카 재배 벤로형 유리온실에서 난방에너지 절감 패키지 기술 적용효과)

  • Kwon, Jin Kyung;Jeon, Jong Gil;Kim, Seung Hee;Kim, Hyung Gweon
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.225-231
    • /
    • 2016
  • Glasshouse heating package technologies to improve energy usage efficiency in winter were developed. Heating package was composed of the ground water source heat pump with heating capacity of 105kW, the aluminum multi-layer thermal curtain with six layers of different materials and the root zone local heater with XL pipes of ${\phi}20mm$. Venlo type glasshouse($461m^2$) with the heating package was compared with the same type and area control glasshouse with the light oil boiler, the usual non-woven fabric thermal curtain with respect to the glasshouse inside temperature, relative humidity, crop growth, and heating energy consumption. The results of test in paprika cultivation glasshouses showed that the air temperature inside glasshouse with aluminum multi-layer thermal curtain was maintained $2.2^{\circ}C$ higher than that of control glasshouse in un-heating night time and the temperature in bed with root zone local heating was $4.7^{\circ}C$ higher than that in bed without local heating. Average heating coefficient of performance(COP) of the ground water source heat pump used in paprika cultivation was 3.7 and the glasshouse inside temperature was maintained at $21^{\circ}C$ of heating set up temperature. The heating energy consumptions per 10a were measured at 14,071L of light oil and 364kWh of electric power for the control glasshouse and 35,082kWh for the glasshouse applied heating package. As results, the heating cost of the glasshouse applied heating package was 87 percent lower than that of control glasshouse. The growths of paprika in glasshouses of control and applied heating package did not show any significant difference.

An Experimental Study on the Energy Separation of the $100Nm^3$/hr Vortex Tube for $CO_2$ Absorption ($CO_2$ 흡수용 $100Nm^3$/hr급 Vortex Tube의 에너지분리 특성에 관한 실험적 연구)

  • Kim, Chang-Su;Han, Keun-Hee;Park, Sung-Young
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.213-219
    • /
    • 2010
  • Vortex tube is the device that can separate small particles from the compressed gas, as well as compressed gas into hot and cold gas. Due to energy and particle separation ability, a vortex tube can be used as the main component of the $CO_2$ absorption device. In this study, experimental approach has been performed to analyze the energy separation characteristics of the vortex tube. To obtain the preliminary design data, energy separation characteristics of the vortex tube has been tested for orifice diameter, nozzle area ratio, and tube length. As a result, the orifice diameter is the major factor of the vortex tube design. The nozzle area ratio and tube length have a minor effect on the energy separation performance. For Dc=0.6D, AR=0.14~0.16, and L=16D, maximum energy separation has been occurred. The result from this study can be used as the basic design data of the $100Nm^3$/hr class vortex tube applied to the $CO_2$ absorption device. Compared with the $CO_2$ absorption process containing an absorption tower, the process with a vortex tube is expected to have a huge advantage of saving the installation space and the operating cost.

Adaptive Filtering for Aggregation in Sensor Networks (센서 네트워크에서 집계연산을 위한 적응적 필터링)

  • Park, No-Joon;Hyun, Dong-Joon;Kim, Myoung-Ho
    • Journal of KIISE:Databases
    • /
    • v.32 no.4
    • /
    • pp.372-382
    • /
    • 2005
  • Aggregation such as computing an average value of data measured in each sensor commonly occurs in many applications of sensor networks. Since sensor networks consist of low-cost nodes with limited battery power, reducing energy consumption must be considered in order to achieve a long network lifetime. Reducing the amount of messages exchanged is the most important for saving energy. Earlier work has demonstrated the effectiveness of in-network data aggregation and data filtering for minimizing the amount of messages in sensor networks. In this paper, we propose an adaptive error adjustment scheme that is simpler, more effective and efficient than previous work. The proposed scheme is based on self-adjustment in each sensor node. We show through various experiments that our scheme reduces the network traffic significantly, and performs better than existing methods.

Optimal sensor placement for cable force monitoring using spatial correlation analysis and bond energy algorithm

  • Li, Shunlong;Dong, Jialin;Lu, Wei;Li, Hui;Xu, Wencheng;Jin, Yao
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.769-780
    • /
    • 2017
  • Cable force monitoring is an essential and critical part of the safety evaluation of cable-supported bridges. A reasonable cable force monitoring scheme, particularly, sensor placement related to accurate safety assessment and budget cost-saving becomes a major concern of bridge administrative authorities. This paper presents optimal sensor placement for cable force monitoring by selecting representative sensor positions, which consider the spatial correlativeness existing in the cable group. The limited sensors would be utilized for maximizing useful information from the monitored bridges. The maximum information coefficient (MIC), mutual information (MI) based kernel density estimation, as well as Pearson coefficients, were all employed to detect potential spatial correlation in the cable group. Compared with the Pearson coefficient and MIC, the mutual information is more suitable for identifying the association existing in cable group and thus, is selected to describe the spatial relevance in this study. Then, the bond energy algorithm, which collects clusters based on the relationship of surrounding elements, is used for the optimal placement of cable sensors. Several optimal placement strategies are discussed with different correlation thresholds for the cable group of Nanjing No.3 Yangtze River Bridge, verifying the effectiveness of the proposed method.

Design of Self-Starting Hybrid Axial Flux Permanent Magnet Synchronous Motor Connected Directly to Line

  • Eker, Mustafa;Akar, Mehmet;Emeksiz, Cem;Dogan, Zafer;Fenercioglu, Ahmet
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1917-1926
    • /
    • 2018
  • In view of the current state of the reserves of electric energy generated resources and the share of electric motors in electricity consumption, many researches and studies related to efficiency in electric motors are being made. The presented work is related to the Axial Flux Permanent Magnet Synchronous Motor (AF-PMSM), which has recently undergone significant work based on the development of magnet and motor technology. In this study, a novel AF-PMSM was designed analytically through Finite Element Method (FEM) which can be started by connecting to a line such as an asynchronous motor in a transient state and can operate with high efficiency and power factor after synchronization in steady state without the need for an expensive motor drive. According to the obtained FEM results, a design with an efficiency class of IE4 of 5.5 kW shaft power, a 4 poles motor was obtained. As a result, economic calculations indicate that the extra cost of the designed Line start AF-PMSM with respect to the asynchronous motor is rapidly compensated by energy saving due to a more efficient operation, especially constant speed operations. As a result of the analysis obtained, the targeted values are reached. For induction motors and radial flux permanent magnet synchronous motors, a good alternative motor that can operate with high efficiency and power factor has been obtained.

A Study on the Precautions Effects of the Enclosure Integrity Test for the Gaseous Extinguishing Systems: Focusing on the Power Plant (가스계 소화설비의 밀폐도 시험에 영향을 미치는 사전조치에 관한 연구: 발전소를 중심으로)

  • Kim, Young-Chul;Jo, Il-Hyun;Lee, Su-Kyung
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.60-66
    • /
    • 2015
  • The present study was aimed to analyze enclosure integrity test, which is the performance experiment of soaking time, in a fire zone equipped with gaseous extinguishing system in an effort to find understand the effect of precaution factors upon the success of fire extinguishment. To achieve the goal of this study, it divided the fire zones of internal and external power plants into ones taking precaution measures and not taking them and then enclosure integrity test was given respectively. Therefore, this study examined the success rate if the test according to the presence and absence of the precaution measure and confirmed the failure factors, designed concentration soaking time and proportion of leakage area to total volume area by type of gaseous extinguishing system and rooms. Precaution measures were applied to the fire zones without them to confirm the increase of the success rate of enclosure integrity test. By doing so, it was found that reduced number of experiments caused by failure led to cost saving.

Experimental study on seismic behavior of reinforced concrete column retrofitted with prestressed steel strips

  • Zhang, Bo;Yang, Yong;Wei, Yuan-feng;Liu, Ru-yue;Ding, Chu;Zhang, Ke-qiang
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1139-1155
    • /
    • 2015
  • In this study, a new retrofitting method for improving the seismic performance of reinforced concrete column was presented, in which prestressed steel strips were utilized as retrofitting stuff to confine the reinforced concrete column transversely. In order to figure out the seismic performance of concrete column specimen retrofitted by such prestressed steel strips methods, a series of quasi-static tests of five retrofitted specimens and two unconfined column specimen which acted as control specimens were conducted. Based on the test results, the seismic performance including the failure modes, hysteresis performance, ductility performance, energy dissipation and stiffness degradation of all these specimens were fully investigated and analyzed. And furthermore the influences of some key parameters such as the axial force ratios, shear span ratios and steel strips spacing on seismic performance of those retrofitted reinforced concrete column specimens were also studied. It was shown that the prestressed steel strips provided large transverse confining effect on reinforced concrete column specimens, which resulted in improving the shearing bearing capacity, ductility performance, deformation capacity and energy dissipation performance of retrofitted specimens effectively. In comparison to the specimen which was retrofitted by the carbon fiber reinforced plastics (CFRP) strips method, the seismic performance of the specimens retrofitted by the prestressed steel strips was a bit better, and with much less cost both in material and labor. From this research results, it can be concluded that this new retrofitting method is really useful and has significant advantages both in saving money and time over some other retrofitting methods.