
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 5, May. 2014                                               1567 
Copyright ⓒ 2014 KSII 

Efficient Virtual Machine Resource 
Management for Media Cloud Computing 

 
Mohammad Mehedi Hassan1, Biao Song1, Ahmad Almogren1, M. Shamim Hossain1, Atif Alamri1, 

Mohammed Alnuem1, Muhammad Mostafa Monowar2 and M. Anwar Hossain1 
1College of Computer and Information Sciences, King Saudi University 

Riyadh, 11543, Kingdom of Saudi Arabia 
[e-mail: {mmhassan, bsong, , ahalmogren, mshossain, atif, malnuem, mahossain}@ksu.edu.sa] 
2Department of Information Technology, Faculty of Computing and Information Technology,  

King AbdulAziz University 
Jeddah, 21589, Kingdom of Saudi Arabia 

[e-mail: hemal.cu@gmail.com] 
*Corresponding author: Mohammad Mehedi Hassan 

 
Received October 23, 2013; revised January 4, 2014; accepted March 31, 2014; published May 29, 2014 

 

 

Abstract 
 

Virtual Machine (VM) resource management is crucial to satisfy the Quality of Service 
(QoS) demands of various multimedia services in a media cloud platform. To this end, this 
paper presents a VM resource allocation model that dynamically and optimally utilizes VM 
resources to satisfy QoS requirements of media-rich cloud services or applications. It 
additionally maintains high system utilization by avoiding the over-provisioning of VM 
resources to services or applications. The objective is to 1) minimize the number of physical 
machines for cost reduction and energy saving; 2) control the processing delay of media 
services to improve response time; and 3) achieve load balancing or overall utilization of 
physical resources. The proposed VM allocation is mapped into the multidimensional 
bin-packing problem, which is NP-complete. To solve this problem, we have designed a 
Mixed Integer Linear Programming (MILP) model, as well as heuristics for quantitatively 
optimizing the VM allocation. The simulation results show that our scheme outperforms the 
existing VM allocation schemes in a media cloud environment, in terms of cost reduction, 
response time reduction and QoS guarantee. 
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1. Introduction 

In recent years, multimedia cloud computing [1] is becoming a promising technology to 
provide a flexible stack of computing, storage and software services in a scalable and  
virtualized manner  for media-rich applications [2][3][4].  In this media  cloud environment,  
the virtualization  technology is applied  to package  the required  CPU,  memory,  GPU  
(graphics  processing unit), storage and network bandwidth resources of servers into virtual 
machines to manage and provision heterogeneous multimedia services and applications  at 
lower cost  with  minimal  efforts.  These  services include  but are not limited to image/video 
retrieval, video transcoding, streaming, video rendering, media analytics, sharing  and delivery 
[5][6][7]. 
     Due  to the heterogeneity  and  mobility  of the media  services  and  users, media cloud has 
brought up the need for an efficient VM resource management to satisfy the QoS requirements 
of the media services, especially when different atomic media services such as streaming 
service, video transcoding services, rendering  services and so on are composed to meet the 
customer demands  [8]. These  services have  different  QoS requirements,  and  need dynamic 
VM resource capacity at the run-time [1]. In addition, the processing delay of both the atomic 
and composite media services at the server side under different network conditions makes it 
difficult to efficiently manage VM resources, while fulfilling QoS demands  [1][9][10]. 
     Although there are many researches going on to study various VM resource management 
techniques in cloud environment [11]-[22], very few of them are suitable for media  cloud 
enthronement (Section2 provides  a detailed survey of these works related to current paper).  
This  is due to the dynamic  nature of the multimedia services (atomic and composite) in terms 
of variable resource requirements at run-time. Currently,  there  exist  few researches  
[23]-[28] related  to VM resource  allocation  in a multimedia  cloud environment.  However,  
most of them do not take into account the composite media service scenario, which can affect 
the response time as well as the overall utilization of the physical resources. In addition, they 
do not consider the multiple VM resource dimensions  (i.e. CPU,  GPU,  memory,  storage and 
network bandwidth) in the resource allocation problem. 
      In this paper,  we tackle the aforementioned challenges of VM resource allocation in a 
media cloud environment. We propose a VM resource allocation  model  that optimally  
allocates  VM resources  to a set  of physical machines/servers  by considering  the dynamic  
VM resource  requirements  for atomic and composite media services. It also ensures the 
minimum QoS requirements of the multimedia services, while maintaining high system 
utilization by avoiding over provisioning the VM resources for the services. The proposed VM 
resource allocation model is designed to 1) minimize the number of physical servers/machines 
for cost reduction and energy savings; 2) control the processing delay of multimedia services 
to improve  response time; and 3) achieve load balancing or overall utilization of physical  
resources. 
      To  the best  of our  knowledge,  none  of the follwing works [23]-[28]  so far  presented  as 
a comprehensive  approach that handles  all the above  objectives  at the same time with 
regards  to the resource allocation for a media cloud platform. We formulate the proposed VM 
resource allocation problem into the multidimensional bin-packing  problem,  which is 
NP-complete [29]. Similar to this  problem,  we consider  each  virtual  machine  as an  item,  
and  the dimen- sions as its capacities. The goal is to minimize the number  of physical servers 
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to be used to place all Virtual Machines, while considering physical servers’ capacities. To 
reduce the response time, improve the overall resource utilization and  avoid frequent VM 
migration, we additionally consider three constraints such as processing delay, overall 
resource utilization and special resource utilization. We further define a mechanism  that 
dynamically  determines the optimal threshold value of these  constraints.  Based  on the above  
considerations,  we design  a MILP model for optimizing VM allocation into physical servers. 
We also use various heuristics to generate candidate resource allocation schemes and to 
choose the best scheme for real VM allocation. 
      Several experiments were carried  out to validate the efficiency of our pro- posed VM 
resource allocation model in media cloud platform. These experiments were conducted for 
different request patterns of media services in various environments. We have also compared  
our proposed algorithm with three other existing algorithms in media cloud platform, which 
comprised of a load balancing model [28], queuing model [25], and a round-robin allocation 
[21]. The results include the performance  of cost reduction, response time reduction and a 
QoS guarantee. 
      The rest of the paper is organized as follows: Section 2 presents the related work.  Section  
3 describes  our  VM resource  allocation  model  and  heuristics for the current 
multi-dimensional problem. Section 4 presents experimental results and performance  
comparisons.  Finally,  Section 5 concludes the paper. 

2. Related Work 
In recent years,  the VM resource allocation in cloud environment has gained significant 
attention. Many existing efforts [11]-[22] study various VM resource management techniques 
for cloud resource management. Beloglazov et al [11] investigated energy-aware  VM 
resource allocation heuristics  that provides  data center  resources  to client  applications  in a 
way  that improves the energy efficiency of the data center without violating the negotiated 
SLAs. Aisopos et al [15] proposed a VM resource allocation model for SaaS cloud providers  
using fractional knapsack  problem that maximizes the service provider’s revenue and the 
resource utilization under a heavy load. The model focuses on maintaining the maximum  
resource utilization at the cost of risking potential SLA violations over the pending jobs that 
will yield the smaller profit for the SaaS cloud provider. Lin et al [17] developed  a 
self-organizing  model to manage  cloud VM resources without the requirement of a 
centralized management control. Teng et al [18] presented a resource pricing and equilibrium 
allocation policy for limited cloud user competition over resources.  Van et al [16] presented 
an autonomic virtual resource management mechanism in a cloud for service hosting 
platforms. Similarly, Berral et al [21] focused on autonomic energy-aware scheduling in the 
cloud that dynamically adapts to varying task types and workloads, and even to varying cloud 
infrastructure. The emphasis there on replacing uncertain information with data mining based 
algorithms, Game-theory based VM resource management for clouds was also studied in 
[19][20]. 
      However, the works presented  above  do not consider  media  cloud environment scenario, 
where a short battery lifetime, varying wireless channel conditions, and interaction latency 
pose major challenges for VM resource allocation.  Additionally,  these  VM resource  
allocation  models are unsuitable  for heterogeneous multimedia services (atomic and 
composite), which are basically dynamic  in nature. Currently, there are some research  efforts 
going on [23]-[28] for allocating VM resources in a multimedia cloud environment. Sembiring  
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et al. [23] investigated the relationship between the properties of media tasks and their 
resource consumption and accordingly propose a dynamic resource allocation solution 
utilizing machine learning techniques.  Nan et al [25] proposed a cost-effective  resource 
allocation optimization approach for multimedia cloud that was based on a queuing model. 
They considered the data center infrastructure as a node-weighted tree-like graph,  and then 
used the queuing  model to capture the relationship between the service response time and the 
allocated resources. They also studied the resource allocation problem  in a single-class 
service case and a multiple-class service case, respectively. The same authors also present 
similar approach in [24][26][27]. 
      Wen et al [28] presented an effective load-balancing algorithm for a cloud- based  
multimedia system, which can allocate and  schedule  VM resources  for different user 
requests with minimum costs. They considered the network proximity and  node server traffic 
loads while making  an allocation. They  utilized a round-robin algorithm to find the optimal 
node servers, which would minimize costs. However, those who work in the multimedia cloud 
assume that the pool of VM resources  is homogeneous  and  that all multimedia  service tasks 
are atomic;  this  is not practical.  In [6], Miao et al presented  a cloud-based free viewpoint 
video rendering  framework. In this architecture, every time, the user requests a new viewpoint, 
the view will be rendered  in the cloud and then sent to the client. The researchers  also 
proposed  a resource allocation scheme that jointly considered  rendering  and  rate allocations 
between the cloud and client  to optimize  the QoE (Quality of Experience).  Here, the resource  
allocation  is restricted  to the free viewpoint video rendering  framework  and cannot be used 
for the general media cloud environment. 
      Some research [30][31] focused on VM allocation for virtual desktop cloud (VDC)  
environment  from  the thin client  perspective.  In  [30],  Calyam  et  al. presents  a 
utility-directed  resource  allocation  model  (U-RAM)  that uses an offline benchmarking 
based  combined  utility  function  of CPU,  memory,  net- work health and thin-client user 
QoE. This is to dynamically  create and place virtual desktops in resource pools at distributed 
cloud data centers, while optimizing  resource  allocations.  This  is accomplished  by 
considering  timeliness and  coding  efficiency as quality  dimensions.  They  also propose  an  
iterative algorithm for U-RAM (an  NP-Hard problem)  to optimize resource allocation with  
fast  convergence  that is based  on combined  utility  functions.  However, the U-RAM model 
cannot be directly applicable  in the media cloud environment  since it  does not consider  the 
composite  multimedia  service or application. This  can affect the response time as well as 
overall utilization of VM resources. 
      There are some others works which focus on resource allocation in heterogeneous 
multimedia services and network. For example, in [38], the authors presented a framework for 
efficient bandwidth allocation and group cooperation in P2P Live streaming scneario. In [39], 
the authors developed a fair resource allocaiton algorithm based on game theory for wirless 
multimedia communications. A non-intrusive and adaptable resource management framework, 
for multimedia applications, distributed in open and heterogeneous home networks is 
proposed in [40] 
       To the best of our knowledge, only a few attempts towards  proposing  an all-inclusive  
approach that demonstrates a cost-effective and dynamic  VM resource allocation  for  a media  
cloud platform,  which not only considers atomic  as well as composite  multimedia  services 
but also heterogeneous  net- work conditions  along with  the overall  utilization  of physical  
servers.  There- fore, the exploration of such a comprehensive approach is timely and crucial 
for considering the proliferation of emerging multimedia cloud computing. 
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3. Proposed VM Resource Allocation Model in Media Cloud Systems 

3.1 Problem Formulation 
The proposed VM resource allocation problem is mapped to the multidimensional bin-packing 
problem [29], which is NP complete.  In this problem, we have to map several items into the 
smallest number of bins as possible. Here, each item denotes a tuple, which contains its 
dimensions.  In our scenario, we consider each VM as an item and the dimensions like CPU, 
memory, storage, network bandwidth, and GPU, as its capacities. The target is to find out the 
minimum number of physical servers to place all the VMs, with respect to physical server’s 
capacities. To solve this problem, we have designed a MILP model, as well as heuristics to 
quantitatively optimize the VM allocation. We also consider three additional constraints: the 
processing delay of media service, resource utilization, and the special resource utilization to 
reduce the response time, improve the overall resource utilization and avoid frequent VM 
migration respectively. 
      The  VM resource  allocation  process  can  be static or dynamic.  In  static VM allocation, 
VM capacities are configured using peak load demands  of each media  workload.  The  
utilization  of the peak  load  demand  ensures  that the VM  does  not overload  and  stay  in  the 
same  physical  servers  during  their entire lifetime. However, it leads to idleness due to the 
variable  VM resource demand  of  media workloads. 
      In dynamic  VM allocation, VM capacities are configured dynamically  according to the 
current media workload demands.  However, it may require migrating VMs between physical 
servers in order to: (i) pull out physical servers from an overloaded  state when the sum of 
VMs capacities mapped  to a physical server becomes higher than its capacity; (ii) turn off a 
physical server when the VMs mapped  to it can be moved to other physical servers. In our 
scenario, we allow the virtual  machine  capacities  to be varied  on demand.  When  new media 
service joins, the system uses the proposed  VM allocation algorithm  to find proper  physical  
server.  If VM migration  is required  due to the occurrence  of an overloaded  state, the system 
also adopts the same VM allocation algorithm for selecting a new physical server. Now, we 
present a linear programming model to solve the VM resource allocation problem. 

3.2 Linear Programming Model 
 
The input parameters and variables used in the linear programming formulation are presented 
in Table 1. For an atomic or composite media service I that needs to be allocated, the MILP 
model is presented in Eq. (1) to (6). 
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The objective function in (1) aims at minimizing the number of required physical servers. The 
constraint in (2) guarantees that each virtual machine is mapped to a single physical server. 
Equation (3) guarantees that the virtual machine demands allocated in each physical server do 
not overload its capacity. The constraint in (4) guarantees that the processing delay of media 
service I does not exceed a certain threshold value T. Equation (5) is an optional constraint 
which can help to improve the overall resource utilization. The optional constraint in (6) can 
reduce the chance of special resource overload and can potentially balance the special resource 
utilization among all physical servers. Here special resource means that some media 
applications may give more importance to only CPU than other resources or combinations of 
any resources. In this scenario, the constraint in (6) cans address to balance the special 
resource utilization throughout the physical servers. 
       Since the future workload may not be predictable, our objective function in (1) represents 
the average statistics from time 0 to current time. For the constraints, they should be satisfied 
at any time when the allocation decision is made. Thus, we did not present the time variable t  
in those formulas. The optional constraints (5) and (6) are proposed to reduce the searching 
space for this NP-hard optimization problem. However, the use of these constrains may lead 
the results to be near-optimal. The definitions and effectiveness of pvruc , pvS and Id  are 
explained as follows: 
  

Table 1. Parameters and variables for the VM allocation problem 
 

Parameters Description 
P set of physical servers 
V set of virtual machines   
R set of resources (CPU, memory, storage, GPU and network) 

 

1 2{ , ,..., }nI v v v=  multimedia service (single or composite) 

&,  vr vu R r R∈ ∈  amount of resource r used by VM v 
 

prc R∈  capacity for physical server p P∈ of resource r R∈  

pvruc  overall resource utilization on physical server p P∈  after 
allocating virtual machine v V∈  

pvS  percentage of special resource utilization on physical server p P∈  
after allocating virtual machine v V∈  

1 2p pd  delay between physical servers 1p P∈  and 2p P∈  

ped  delay between physical server p P∈  and external server e 

Id  delay of media service I 

{0,1}py ∈  equals to 1 if physical server p P∈ is used, 0 otherwise 

{0,1}pvx ∈  equals to 1 if virtual machine v V∈ is allocated to physical server 
p P∈  currently, 0 otherwise 

(5) 

(6) 
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Definition 1: (media service delay): Given a multimedia service 1 2{ , ,..., }nI v v v= , we 
discuss three types of service flow. The first case is for the atomic multimedia service case, 
where the VMs have no intercommunication with each other. In this case, the constraint on Id   
can be defined as follows: 
 

i i ipe pv v i
p P

d x T v I
∈

≤ ∀ ∈∑  

 
We apply different threshold values for different Virtual Machines (

ivT for iv ). For any virtual 

machine jv that does not have communication with an external server, the corresponding 
constraint can be removed. The second scenario is for the composite multimedia service with 
synchronous integration, where the screen update from  n Virtual Machines is synchronized 
first, and is then transmitted to the user. In this case, the constraint on Id can be denoted as 
follows: 
 

min( )
i i ipe pv v i

p P
d x T v I

∈

≤ ∀ ∈∑  

Where min( )
ivT represents the most strict delay constraint among all of the services. Every 

virtual machine allocation should meet the requirement of min( )
ivT , since they are 

synchronized. 
      The last case is for the composite multimedia service with sequential composition, where 
the output of the service running on iv  is the input of the service running on 1iv + . In this case, 
the constraint on Id  can be specified as follows:  

1 1

2 1 2 2 1

1 1

1

1

( )

( )

i

n n n n n

pe pv v
p P

pe p p pv v v
p P

n pe p p pv v v
p P

d x T

Given p d d x T T

Given p d d x T T
− −

∈

∈

−
∈

≤

+ ≤ −

...
+ ≤ −

∑

∑

∑

 

 
In this case, the delay constraint on allocation is computed by subtracting vT  from 1vT + .  
 
Definition 2 (Resource utilization and Special Resource condition): Given a media service or 
application i  and a physical machine j , let ijc , ijm , ijg , and ijb  are the percentages of 
resource usage regarding CPU, memory, GPU and network bandwidth, respectively. If the 
application is supported by the VM, then the extra resource consumption of VM, OS and 
remote server should be also included. Thus, application i  and virtual machine v  can be used 
interchangeably. Let jfc , jfm , jfg , and jfb  be the percentages of idle CPU, memory, 
GPU and network bandwidth resources, respectively, on machine j . For any resource, if at 
least k % of free capacity is reserved to buffer the unexpected workload burst, then it would 

(7) 

(8) 

(9) 
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not be counted in the available idle resources. The exact amount of reserved resource is 
determined by the cloud resource provider by using long term benchmark or short term 
workload prediction models [32][33]. The media application can be allocated to that physical 
machine only if the following condition (10) is met:  
 
      ij j ij j ij j ij jc fc & m fm & g fg & b fb≤ ≤ ≤ ≤                                                  (10) 
 
After media application i  is allocated on physical machine j , the average percentage of free 
resource ijap  is defined using (11):  

                                       ( ) 4j j jij jap f f f fgc m b′= + + + /′ ′ ′                                      (11) 
where,  

                     
j jj ij j ij

jj ij j ijj

f fc c f fm mc m
f fg g f fb bg b

= − , = − ,′ ′
′ = − , = −′

                                            (12) 

 
For machine j , the resource utilization condition after allocating application i  is denoted as 

ijruc , which is a mean-square value. Using (13), we have defined ijruc  in (5) as follows:  
 
           2 2 2 2( ) ( ) ( ) ( )j j jij ij ij ij ijjruc f ap f ap f ap f apgc m b′= − + − + − + −′ ′ ′               (13) 
 
      We assume that the applications running on a single physical machine share all of the 
resource capacity in a proportional way. More specifically, application i  will be allocated on 
physical machine j , which will get ( (1 )) 100jijc f %c/ − ×′  of the CPU capacity, and same 
for memory, GPU and bandwidth resoueces.  
      As the resources may not be treated equally in multimedia system, constraint (6) is created 
to address this issue. Let us consider an instance where CPU is more important for processing 
the multimedia tasks, such as face recognition or data analytics. Regarding application i , the 
superiority of machine j  is defined as ijs  in (6) by using (14):  
 
                                            ( (1 )) 1j jij ij ijs c c f fc c= / / − = −′ ′                                        (14) 
 
It turns out that for allocation i  the superiority of machine j  is the percentage of CPU 
capacity that has been occupied after application i ’s allocation. For other systems where 
bandwidth or GPU is more important, the definition of ijs  can be modified accordingly. 

3.3. Threshold Determination 
 
In our MILP formulation, we have three types of threshold: network delay T  in (4), overall 
resource condition 1T  in (5), and free resource 2T  in (6). The delay threshold T  is given by 
the QoS requirement of each application. Certain amount of special resource capacity should 
be reserved to handle an unexpected resource burst. Thus, 2T  will be generated according to 
the specific QoS requirement, the benchmark or the workload burst prediction regarding each 
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application. The applications that experience frequent special resource bursts may require a 
small 2T  value.  
      Normally, we use the objective function presented in (1) to determine the optimal value of 

1T . However, if the physical servers are not capable of supporting all of the requests, in order 
to find the optimal value of 1T , we will introduce a new objective function U  using (15):  
 

 

[ (1 ) ] [ (1 ) ]

[ (1 ) ] [ (1 ) ]
j j

j j

c j j m j j
p P p P

g j j b j j P
p P p P

U fc oc fm om

fg og fb ob C

λ λ

λ λ
∈ ∈

′
∈ ∈

= − × + − ×

+ − × + − × −

∑ ∑

∑ ∑
                    (15) 

where U  is the overall resource utilization; joc , jom , jog , and job  are the total amount of 

CPU, memory, GPU and network bandwidth on physical server jp ; cλ  , mλ  , gλ  and bλ  
denote the pricing schemes for each CPU unit, memory unit, GPU unit and network bandwidth 
unit, respectively; PC ′  is the total cost for maintaining the active physical servers. This new 
objective function measures the total server resource utilization. For the simplicity of 
explanation, we describe the threshold selection algorithm with the objective function U  . It 
is exactly same as if the objective function U  is replaced by the one that we presented in (1).  
Suppose that we have a set of applications, a set of physical servers and a heuristic adopting 
threshold 1T . By varying the value of threshold and by repeatedly using the heuristics, we can 
get different results regarding the overall resource utilization U . 
      Let 1 1( ) (0 1)f T U T= <= <=  be the evaluation function. Our goal is to find an optimal 

1T , which can maximize U . Intuitively, the function 1( )f T  should be nearly unimodal in its 
domain. Considering the optimal 1T  as the standard point, a lower 1T  will block proper VM 
allocation while a higher 1T  may cause improper VM allocation. Both cases result in low 
resource utilization since more physical servers have to be used to handle VM requests.   
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. The rules for choosing threshold value (a). The peak is located in the side part (b). The peak is 

located in the middle part. 
 
      We now propose an iterative approach to determine the optimal value of 1T  . The principle 
of our approach is very similar to that of Bisection method [34] . We repeatedly use the 
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heuristics to simulate the VM allocation process, where different 1T  are used. According to the 
results of U , we bisects the original interval then selects a subinterval where a 1T  maximizing 

1( )f T  must lie for further processing. The updating rule is shown in Fig. 1. 
     In Fig. 1, α  and β  are the midpoints between the current three points. Fig. 1(a) shows the 
situation where the peak point is located in the side part. If ( ) ( )f f Midα > , the current 
midpoint is set as the new high boundary, while α  is set as the new midpoint. Similarly, if 

( ) ( )f f Midβ > , the current midpoint is set as the new low boundary, while β  is set as the 
new midpoint. As shown in Fig. 1(b), for ( ) ( )f f Midα >  and ( ) ( )f f Midβ > , α  is set 
as the new low boundary, while β  is set as the new high boundary.  
      According to the definition domain of 1T  , the low boundary is initialized to be 1 0T =  , 
and the high boundary is 1 1T =  . Therefore, the medium point between the low boundary and 
the high boundary is 1 0 5T = .  . These three points are iteratively updated until the interval 
between the low boundary and the high boundary is small enough. It is not necessary to 
determine 1T  for each set of VM request during runtime. Only a periodical determination is 
required.  

3.4. Heuristics to Model the VM resource Allocation 
 
The multidimensional bin-packing problem can also be solved using heuristics. Although 
heuristic solutions will not guarantee an optimal solution, the required time to obtain a feasible 
solution is much shorter than MILP. We utilize three heuristics like first-fit decreasing (FFD), 
best-fit decreasing (BFD), and worst fit-decreasing (WFD) [29] and modify them according to 
the restrictions of the constraints (eq. (1) - (6)). In that heuristics, a lexicographic order is 
utilized to sort each VM demand. Following the heuristic definitions, the mapping of each VM 
will then be performed. In the FFD heuristic, the VM will be mapped to the first physical 
server with available capacity. In case of a BFD heuristic, it will be mapped to the physical 
server that leaves the least left over space after the mapping between all available physical 
servers. And for WFD heuristic, it will be mapped to the physical server that leaves the largest 
left-over  space after the mapping between all available physical servers. We adopt these three 
heuristics to generate candidate VM allocation schemes, and to choose the best scheme for real 
VM allocation.  

3.4.1. Algorithm Description 
 
In this section, we explain the entire procedure of our proposed allocation algorithm. 
Algorithm 1 presents the pseudo code of the proposed allocation algorithm.  
 
Step 1: Check whether it is necessary to re-select the threshold value. If it is necessary, then 
run the threshold selection algorithm; Otherwise, use the previous threshold value.  
Step 2: Use the three heuristics FFD, BFD and WFD with the threshold value to generate three 
allocation schemes.  
Step 3: Choose the best allocation scheme and enforce allocation.  
Step 4: Update the physical server information for next allocation.  
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3.4.2. Complexity Analysis 
 
The time complexity of the proposed allocation algorithm is denoted by 

2 2
2(3 9 log 100 )O n m pn m× + × × . n  denotes the number of service request, m  denotes the 

number of physical servers, and p  denotes the probability that the threshold will need to be 
re-selected. The time complexity of heuristic allocation algorithm is 2(3 )O n m× , since it calls 
FD, BFD and WFD functions where each function takes ( )O nm  to allocate one service 
request, and 2( )O n m  for the entire allocation. The threshold determination algorithm consists 
of 2log 100  rounds, and heuristic allocation algorithm is called three times in each round. 

Thus, each execution of threshold determination algorithm takes 2
2(9 log 100 )O n m× × . As it 

is executed with probability p , the total complexity of threshold determination part is 
2

2(9 log 100 )O pn m× × .  
 
    Algorithm 1. Pseudo code of VM resource allocation algorithm 
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4. Performance Evaluation 
In this section, we have presented simulation setup description and conducted several 
experiments to validate the efficiency of our proposed VM allocation approach as done in. 
These experiments were conducted for different cases, such as low/high heterogeneity of 
media tasks, and a large/small media task set. We compared our proposed algorithm with three 
existing algorithms: a load balancing model [28], a queuing model[25], and a round-robin 
allocation [21]. The results include the performance of cost reduction; response time reduction 
and QoS guarantee.  

4.1. Simulation Settings 
In order to describe the simulation setup in a clear way, we draw the entire simulation 
infrastructure and present it in Fig. 2. As we can see from the figure, there are two major 
simulation components: workload generator and cloud simulator. The workload generator 
takes responsibility of generating atomic, synchronous and sequential workload for simulation. 
The two sub-components are designed to generate individual multimedia service workload 
and to generate delay constraints for three types of service composition, respectively. The 
cloud simulator receives multimedia service requests from workload generator and creates 
VMs with pre-configured CPU capability, memory, GPU and bandwidth. The cloud 
resourcesand network environment are simulated by generating physical machines/servers 
with identical capacity and network latency matrix indicating the network latency between the 
physical machines/servers, respectively. Finally, seven different resource allocation schemes, 
including proposed method are tested. The results such as the number of active physical 
machine/server and average delay are collected from PM (physical machine) monitor and 
network monitor.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Silumation Infrstructure 
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 Table 2 shows simulation parameters, where HI, ACU, AMU, APU, ANU represents 
heterogeneity index, average CPU utilization(%), average memory utilization(%), average 
GPU utilization(%), and the average network bandwidth utilization(%) respectively. HI, ACU 
and AMUwere retrieved from the Technical University of Berlin (TU-Berlin) workload [8], 
which are normally used by researchers and students to execute computational experiments. 
redTo address multimedia service issues in our simulation, we generate the workload by 
considering several representative multimedia service cases. The first case is Discrete Cosine 
Transform/Inverse Discrete Cosine Transform (DCT/IDCT), which is very CPU intensive and 
mostly used in the MPEG and JPEG encoding/decoding [35][36]. Secondly, image rotation 
has relatively low demand on CPU capacity, but needs more memory and bandwidth. We also 
consider video rendering workload withhigh demand on GPU capability. As the size of 
image/video can be different between the service instances, the workload should not be 
generated in an identical way even for the same multimedia service case. Using the above 
simulation parameters and the patterns of multimedia service, we randomly generate 
multimedia service requests in each workload. Initially, the capacities of physical servers were 
assumed to be identical. In this simulation, the number of physical server was fixed to 100.  
      Table 3 specifies the delay settings, where IDC, SDC, IDT and SDT represents the 
individual delay constraint on atomic media service, the sequential delay constraint on 
adjacent media services, the individual delay time on a single server, and the sequential delay 
time on connected servers respectively. The variation of heterogeneity only affects the delay 
constraint on media services.  
      While allocating the services, two types of allocation schemes are adopted. In large group 
allocation case, all media service requirements are assumed to be generated and submitted at 
one time. On the other hand, small group allocation allows only 1-5 media service requests 
submission. When the current allocation is done, the following 1-5 media service requests will 
be created. In both cases, each group of composite media services contains 1-5 services, which 
can be atomic, synchronous or sequential. Theservice composition does not introduce more 
resource consumption, but can change the delay constraint on the services.  
 

Table 2. Details of workload group 
 

Heterogeneity Number of 
traces 

HI ACU AMU AGU ANU 

Low 50-200 0.17 25.2% 28.36% 30% 30% 
High 50-200 063 47.28% 48.67% 50% 50% 

 
Table 3. Details of delay 

 

Heterogeneity IDC SDC IDT SDT 
Low 25ms-35ms 25ms-35ms 5ms-30ms 5ms-15ms 
High 15ms-45ms 25ms-45ms 5ms-30ms 5ms-15ms 

4.2. Experiments 

4.2.1. Cost Optimization 
Several sets of experiments were conducted in the simulation. Firstly, we adopted different 
request patterns of media services/applications in the experiment (i.e. large/small media 
service group at Low/high heterogeneous environment) to measure the cost optimization 
capability. The number of media requests was fixed to 100.  
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      Fig. 3 shows the simulation results derived from the large task group at low heterogeneity 
environment. From the results, we have found that our proposed approach and the load 
balancing method have the same performance. The optimal allocation sequence is applied by 
the load balancing method as well as our proposed approach. Since the low heterogeneity 
requests do not overuse any type of resource, the resource utilization condition threshold we 
used in our proposed approach does not provide further optimization in this environment. The 
queuing model performs worse than any other solution as it does not consider virtual machine. 
Thus, each service request must occupy one physical server. The round-robin method 
randomly chooses a physical server for each request. Since it does not provide any 
optimization method, we have found that 65 physical servers need to be launched according to 
the allocation results of round-robin method. redThe original FFD, BFD and WFD are also 
tested in this simulation environment. The results suggest that those original heuristics 
considering one dimension (CPU capacity) have inefficient performance while dealing with 
the cloud resource allocation problem on multimedia service. The original WFD, since it 
always puts VM on a physical server with highest CPU capacity, activates 100 physical 
servers to handle 100 service requests. The allocation result of original FFD and that of 
original BFD cause 42 physical servers and 38 physical servers to be active, respectively.  
      In Fig. 4, we present the results retrieved from the large task group and high heterogeneity 
environment. Due to the resource utilization condition threshold, our proposed approach 
outperforms existing algorithms by avoiding overuse of any resource. The performance of 
load balancing method does not degrade so much, as allocating a large group of requests is 
easier than allocating several small groups of requests. While allocating a large group of 
requests the load balancing method can always choose the best allocation among all the 
possible allocations. As the requests consume more resources, the results of round-robin, 
original FFD and original BFD increases to 68, 48 and 41 active servers, respectively. The 
performance of queuing method and that of orignal WFD remains same as what we present in 
Fig. 3 due to the reasons we explained before.  
      It can be seen from Fig. 5 that our proposed also achieves best performance in the small 
task group and low heterogeneity environment. The advantage of our proposed approach was 
greatly amplified in the high heterogeneity environment, which is more similar to the real 
scenario. The results are presented in Fig. 6. Compared with the load balancing method, more 
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than a 10% improvement is achieved from using our proposed approach. Thus, we can 
conclude that our proposed approach is more suitable for the real multimedia service 
allocation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2.2. Scalability 
 
In order to validate the scalability of our proposed approach, we varied the number of service 
requests to test the cost in the small task group and a high heterogeneity environment. Fig. 7 
shows the results of the scalability test. When the total number of service requests equaled 50, 
the performance of our proposed approach was slightly better than that of the load balancing 
method. By increasing the workload, a significant difference can be found in the graph. 
Compared with the loadbalancing method, our proposed approach demonstrates better 
scalability. The queuing method and the round-robin method have obvious drawbacks 
regarding scalability. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Scalability Test Results 

      The queuing method can support maximum 100 service requests with 100 physical servers. 
extcolorredThe similar result is observed from the original WFD algorithm except that more 
than 100 service requests are actually allocated due to the use of VM. Conversely, the 
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round-robin algorithm cannot allocate more than 200 service requests on 100 physical servers. 
The original FFD and BFD algorithms perform better than round-robin algorithm, but worse 
than proposed method and balancing method. 
 
 
 
 
 
 
 
 
 

 

 

 

 

Fig. 8. Resource utilization condition threshold vs. cost 

      In the previous simulations, we allowed our proposed approach to use the optimal resource 
utilization condition threshold value. It was also necessary to show the importance of the 
threshold selection. We adopted a different threshold value in our proposed approach and 
presented the cost optimization results in Fig. 8. From the graph, we can see that our proposed 
approach can achieve the best performance when the selection of the threshold value is 
appropriate. Otherwise, the performance may significantly degrade. The results validate the 
importance of our threshold selection algorithm.  

4.2.3. Response time and QoS Success Rate 
 
In the second set of simulations, we explore the actual response time and QoS success rate in 
different environments. redSince the original FFD, BFD and WFD algorithms do not consider 
delay issue as the round-robin algorithm does, we do not present similar results of those 
algorithms. In Fig. 9 and Fig. 10, we present the outcomes that we recorded in a low 
heterogeneity environment.  
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      In Fig. 9, the average delay (response time) of the services achieved by each solution is 
illustrated. The reason why the queuing and round-robin performs is worse than the load 
balancing and our proposed approach is because they do not consider the delay optimization 
during the VM allocation process. The loadbalancing method is able to optimize atomic delay 
for each service allocation. Our proposed approach performs better than the load balancing 
approach since we clearly define the delay model for both atomic and composite media 
services. Thus, we are capable to address the dependency issue among the services and the 
physical machines.   
      As shown in Fig. 10, our algorithm also achieves a higher QoS success rate. The results of 
the queuing model decrease dramatically after 100 service requests, as it can only support 100 
services with a 100 physical server. The additional service requests must wait in the queue, 
which means that there is a QoS violation. The round-robin approach maintains an average 
70%-80% success rate with random server selection. The load balancing approach cannot 
meet the QoS requirement when the numberof service requests exceeds 100. Our approach 
improves this number to 150. At the beginning stage, the composite QoS requirement can be 
fulfilled by the load balancing approach, since the physical servers with very low individual 
delay are selected. However, the dependency of services/servers must be considered when the 
workload increases to a certain level. At that time, the physical servers with very low 
individual delay have been occupied. Thus, the load balancing approach is more likely to 
violate QoS requirement without exploring the dependency of services/servers.  
      Fig. 11 and Fig. 12 show the results in a high heterogeneity environment. From Fig. 11, 
we can see that the performance of queuing and of the round-robin do not change, since their 
allocation results are atomic to the service delay requirement. Therefore, the actual response 
time remains same, as the services are still allocated to the same physical servers. As can be 
seen from Fig.12 that the QoS success rate dramatically decreases if we use the queuing 
allocation or the round-robin allocation. The performance of the load balancing method also 
has an obvious degradation. Our proposed method shows its superiority, including low 
response time and high QoS success rate in the high heterogeneity environment. Consequently, 
we can conclude that our delay model is effective in the composite service allocation.  
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5. Conclusion 
The media cloud is emerging as a remarkable technology that can facilitate effective 
processing of complex multimedia services and provide QoS provisioning for multimedia 
service or applications from anywhere, anytime and at any device at lower costs. One major 
challenge for a cloud provider in such media cloud environment is to find an efficient VM 
resource allocation model for processing media service tasks. This paper presents a VM 
resource allocation model that dynamically utilizes VM resources to satisfy QoS requirements 
of media- rich mobile cloud services or applications. In order to do VM resource allocation 
effectively, we have presented a MILP model, as well as heuristics. Performance comparisons 
show that our resource management/allocation approach performs very competitively while 
satisfying users’ QoS demand. This work does not include QoE, media play-back quality, 
media service profiling and benchmarking. As for the future works, we would incorporate 
some of above as a part of the future work. We believe that our proposed allocation approach 
can adapt such settings.  
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