DOI QR코드

DOI QR Code

Application Effect of Heating Energy Saving Package on Venlo Type Glasshouse of Paprika Cultivation

파프리카 재배 벤로형 유리온실에서 난방에너지 절감 패키지 기술 적용효과

  • Kwon, Jin Kyung (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science, RDA) ;
  • Jeon, Jong Gil (Agricultural Safety Engineering Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Seung Hee (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science, RDA) ;
  • Kim, Hyung Gweon (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science, RDA)
  • 권진경 (국립원예특작과학원 시설원예연구소) ;
  • 전종길 (국립농업과학원 농업공학부 재해예방공학과) ;
  • 김승희 (국립원예특작과학원 시설원예연구소) ;
  • 김형권 (국립원예특작과학원 시설원예연구소)
  • Received : 2016.09.29
  • Accepted : 2016.10.31
  • Published : 2016.12.31

Abstract

Glasshouse heating package technologies to improve energy usage efficiency in winter were developed. Heating package was composed of the ground water source heat pump with heating capacity of 105kW, the aluminum multi-layer thermal curtain with six layers of different materials and the root zone local heater with XL pipes of ${\phi}20mm$. Venlo type glasshouse($461m^2$) with the heating package was compared with the same type and area control glasshouse with the light oil boiler, the usual non-woven fabric thermal curtain with respect to the glasshouse inside temperature, relative humidity, crop growth, and heating energy consumption. The results of test in paprika cultivation glasshouses showed that the air temperature inside glasshouse with aluminum multi-layer thermal curtain was maintained $2.2^{\circ}C$ higher than that of control glasshouse in un-heating night time and the temperature in bed with root zone local heating was $4.7^{\circ}C$ higher than that in bed without local heating. Average heating coefficient of performance(COP) of the ground water source heat pump used in paprika cultivation was 3.7 and the glasshouse inside temperature was maintained at $21^{\circ}C$ of heating set up temperature. The heating energy consumptions per 10a were measured at 14,071L of light oil and 364kWh of electric power for the control glasshouse and 35,082kWh for the glasshouse applied heating package. As results, the heating cost of the glasshouse applied heating package was 87 percent lower than that of control glasshouse. The growths of paprika in glasshouses of control and applied heating package did not show any significant difference.

본 연구에서는 유리온실 경영비 절감을 위한 고효율 난방기술을 개발하기 위하여 지하수열원 히트펌프, 알루미늄 다겹보온커튼, 근권부 국소난방장치를 조합한 난방 패키지 모델을 구성하고 파프리카 재배 벤로형 유리온실에 적용 시험을 수행하였다. 적용효과 분석을 위하여 관행 경유온수보일러와 일반 보온커튼을 설치한 대조구 온실과 비교시험을 통해 온실환경, 난방비용, 작물생육 등을 검토하였다. 알루미늄 다겹보온커튼과 일반 부직포 보온커튼을 설치한 온실에 대한 무가온 조건에서의 야간온도 비교시험에서 알루미늄 다겹보온커튼 설치 온실의 온도가 일반 부직포 보온커튼 설치 온실에 비해 평균 $2.2^{\circ}C$ 더 높게 유지됨을 확인하였다. 또한 근권부 국소 난방장치를 설치한 온실에서 미설치 온실에 비해 야간 난방 중의 베드내부 근권온도가 $4.7^{\circ}C$ 더 높게 유지됨을 확인하였다. 난방패키지를 구성하는 지하수열원 히트펌프의 난방성능을 분석한 결과 지하수를 직접 열원으로 이용하는 시스템 특성상 난방성능계수는 평균 3.7로 비교적 높게 나타났다. 난방패키지를 적용한 처리구 온실과 관행 난방의 대조구 온실에 대하여 연료소비량을 계측한 결과 10a($1,000m^2$)당 대조구 온실은 경유 14,071L, 전력 364kWh를 소비하였고, 처리구는 전력 35,082kWh를 소비하여 난방비용 기준으로 대조구 온실의 비용 절감율은 87%로 나타났다. 처리구 및 대조구 온실의 작물생육을 비교한 결과 초장과 엽록소 함량에서 차이가 발생하였으나 두 온실의 난방온도가 거의 동일하므로 전체적인 생육은 큰 차이가 없는 것으로 분석되었다. 원예시설의 난방에너지 절감효과를 극대화하기 위해서는 본 연구의 난방패키지를 구성하는 개별 기술뿐 아니라 이미 개발된 고효율 공조기 이용기술, 보온성 향상기술, 온도관리 기술 등을 지역, 시설, 작목, 작형 등에 최적화하여 조합할 수 있는 추가적 패키지 모델의 개발 연구가 필요한 것으로 판단되었다.

Keywords

References

  1. Briassoulis, D., D. Waaijenberg, J. Gratraud, and B. von Eslner. 1997a. Mechanical properties of covering materials for greenhouse; part1, general overview. J. agric Engng Res. 67:81-96. https://doi.org/10.1006/jaer.1997.0154
  2. Briassoulis, D., D. Waaijenberg, J. Gratraud, and B. von Eslner. 1997b. Mechanical properties of covering materials for greenhouse; part2, quility assessment. J. agric Engng Res. 67:171-217. https://doi.org/10.1006/jaer.1997.0155
  3. Gosselin, A. and M.J. Trudel. 1983. Interactions between air and root temperatures on greenhouse tomato: I. growth, development and yield. J. Amer. Soc. Hort. Sci. 108(6):901-905.
  4. Gracia, J.L., De la Plaza, L.M. Narvas, R.M. Benavente and L. Luna. 1998. Evaluation of the feasibility of alternative energy sources for greenhouse heating. J. Agric. Engng Res. 69:107-114. https://doi.org/10.1006/jaer.1997.0228
  5. Jeon, J.G., D.G. Lee, Y. Peak, and H.K. Kim. 2015. Study on heating performance of hybrid heat pump system using geothermal source and solar heat for protected horticulture. J. of the Korean Solar Energy Society 35(5):49-56 (in Korean). https://doi.org/10.7836/kses.2015.35.5.049
  6. Kang, Y.K., Y.S. Ryou, G.C. Kang, Y. Paek, and Y.J. Kim. 2007. Heating performance of horizontal geothermal heat pump system for protected horticulture. J. of Biosystems Eng. 32(1):30-36 (in Korean). https://doi.org/10.5307/JBE.2007.32.1.030
  7. Kawasaki, Y., K. Suzuki, K. Yasuba, and M. Takaichi. 2011. Effect of local air heating by a hanging duct near the tomato shoot apex and flower clusters on vertical temperature distribution, fruit yield and fuel consumption. Hort. Res. (Japan) 10(3):395-400 (in Japanese). https://doi.org/10.2503/hrj.10.395
  8. Kawashima, H., M. Takaichi, M. BaBa, K. Yasui and Y. Nakano. 2008. Effects of energy saving and the reduction of carbon dioxide emissions with a hybrid-heating system using an air-to-air heat pump for greenhouse heating. Bulletin of the National Institute of Vegetable and Tea Science 7:27-36 (in Japanese).
  9. Kim, S.E., S.Y. Sim, S.D. Lee, and Y.S. Kim. 2010. Appropriate root-zone temperature control in perlite bag culture of tomato during winter season. Kor. J. Hort. Sci. Technol. 28(5):783-789 (in Korean).
  10. Kwon, J.K., J.H. Lee, N.J. Kang, K.H. Kang, and Y.H. Choi. 2004. Effects of covering materials and methods on heat insulation of a plastic greenhouse and growth and yield of tomato. J. of Bio-Environment Control 13(4):251-257 (in Korean).
  11. Kwon, J.K., G.H. Kang, J.P. Moon, Y.K. Kang, C.K. Kim, and S.J. Lee. 2013. Performance Improvement of an Air Source Heat Pump by Storage of Surplus Solar Energy in Greenhouse. Protected Horticulture and Plant Factory 22(4):328-334 (in Korean). https://doi.org/10.12791/KSBEC.2013.22.4.328
  12. Kwon, J.K., G.H. Kang, J.P. Moon, T.S. Lee, and S.J. Lee. 2015. Effect of growing part following local heating for cherry tomato on temperature distribution of crop and fuel consumption. Protected Horticulture and Plant Factory 24(3):217-225 (in Korean). https://doi.org/10.12791/KSBEC.2015.24.3.217
  13. Lee, M.Y., S.J. Hwang, and B.R. Jeong. 2001. Growth and yield of hydroponic rose 'little marble' as affected by root zone temperature and heating method in winter season. Journal of Bio-Environment Control 10(1):61-68 (in Korean).
  14. Lee, S.Y., H.J. Kim, H. Chun, S.H. Yun, Y.I. Nam, and J.G. Lim. 2003. Energy saving by use of pull&roll multi layer type screen system on greenhouse. Kor. Res. .Soc. Pretected Hort. 16(1):1-6 (in Korean).
  15. Ministry of Agriculture, Food and Rural Affairs(MAFRA). 2014a. Greenhouse status for the vegetable grown in facilities and the vegetable productions in 2013. ed. Sejong, Korea (in Korean).
  16. Ministry of Agriculture, Food and Rural Affairs(MAFRA). 2014b. Cultivation status of floricultural crop in 2013. ed. Sejong, Korea (in Korean).
  17. Ministry of Agriculture, Food and Rural Affairs(MAFRA). 2016c, Enforcement guidance on MAFRA enterprise. http://manual.agrix.go.kr/home/index.php (in Korean).
  18. Ryou, Y.S., Y.K. Kang, G.C. Kang, Y.J. Kim, and Y. Paek. 2008. Cooling performance of horizontal type geothermal heat pump system for protected hoticulture. Journal of Bio-Environment Control 17(2):90-95 (in Korean).
  19. Sato, K. and N. Kitajima. 2010. Local heating temperature effects on the growth and yield of strawberries [Fragaria] in high-bench culture. Fukuoka Agricultural Research Center Report (29):27-32 (in Japanese).
  20. Sone, K., K. Dan, M. Okimura, and E. Ktanai. 2007. Effect of temperature treatment of crown party on flower-bud formation in ever-bearing strawberry. Soc. Hort. Sci. (Japan) 6(1):423 (in Japanese).
  21. Tong, Y., T. Kozai, N. Nishioka, and K. Ohyama. 2011. Greenhouse heating using heat pumps with a high coefficient performance(COP). Biosystems Engineering 106:405-411.
  22. Willits, D.H. and Y.R. Gurjer. 2004. Heat pumps for the heating and night-cooling of greenhouse crops: a simulation study. Trans. of the ASAE 47(2):575-584. https://doi.org/10.13031/2013.16038