• Title/Summary/Keyword: energy conversion rate

Search Result 501, Processing Time 0.033 seconds

Effect of Crystal Form on Bioavailability (결정형이 생체이용률에 미치는 영향)

  • Sohn, Young-Taek
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.6
    • /
    • pp.443-452
    • /
    • 2004
  • Habit is the description of the outer appearance of a crystal. If the environment of a growing crystal affects its external shape without changing its internal structure, a different habit results. Crystal habit and the internal structure of a drug can affect bulk and physicochemical properties, which range from flowability to chemical stability. A polymorph is a solid crystalline phase of a given compound resulting from the possibility of at least two different arrangements of the molecules of that compound in the solid state. Chemical stability and solubility changes due to polymorphism can have an impact on a drug's bioavailability and its development program. During crystallization from a solution, crystals separating may consist of a pure component or be a molecular compound. Solvates are molecular complexes that have incorporated the crystallizing solvent molecule in their lattice. When the solvent incorporated in the solvate is water, it is called a hydrate. To distinguish solvates from polymorphs, which are not molecular compounds, the term pseudopolymorph is used. Identification of possible hydrate compounds is important since their aqueous solubilities can be significantly less than their anhydrous forms. Conversion of an anhydrous compound to a hydrate within the dosage form may reduce the dissolution rate and extent of drug absorption. An amorphous solid may be treated as a supercooled liquid in which the arrangement of molecules is random. Amorphous solids lack the three-dimensional long-range order found in crystalline solids. Since amorphous forms are usually of higher thermodynamic energy than corresponding crystalline forms, solubilities as well as dissolution rates are generally greater. A study on crystal form includes characterization of (l)crystal habit, (2)polymorphism, (3)pseudopolymorphism, (4)amorphous solid.

Synergy study on charge transport dynamics in hybrid organic solar cell: Photocurrent mapping and performance analysis under local spectrum

  • Hong, Kai Jeat;Tan, Sin Tee;Chong, Kok-Keong;Lee, Hock Beng;Ginting, Riski Titian;Lim, Fang Sheng;Yap, Chi Chin;Tan, Chun Hui;Chang, Wei Sea;Jumali, Mohammad Hafizuddin Hj
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1564-1570
    • /
    • 2018
  • Charge transport dynamics in ZnO based inverted organic solar cell (IOSC) has been characterized with transient photocurrent spectroscopy and localised photocurrent mapping-atomic force microscopy. The value of maximum exciton generation rate was found to vary from $2.6{\times}10^{27}m^{-3}s^{-1}$ ($J_{sat}=79.7A\;m^{-2}$) to $2.9{\times}10^{27}m^{-3}s^{-1}$ ($J_{sat}=90.8A\;m^{-2}$) for devices with power conversion efficiency ranging from 2.03 to 2.51%. These results suggest that nanorods served as an excellent electron transporting layer that provides efficient charge transport and enhances IOSC device performance. The photovoltaic performance of OSCs with various growth times of ZnO nanorods have been analysed for a comparison between AM1.5G spectrum and local solar spectrum. The simulated PCE of all devices operating under local spectrum exhibited extensive improvement with the gain of 13.3-3.7% in which the ZnO nanorods grown at 15 min possess the highest PCE under local solar with the value of 2.82%.

Synergistic effect of exogenous multi-enzyme and phytase on growth performance, nutrients digestibility, blood metabolites, intestinal microflora and morphology in broilers fed corn-wheat-soybean meal diets

  • Kim, MinJu;Ingale, Santosh Laxman;Hosseindoust, Abdolreza;Choi, YoHan;Kim, KwangYeol;Chae, ByungJo
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1365-1374
    • /
    • 2021
  • Objective: This study was conducted to investigate the synergistic effect of exogenous multienzyme and phytase on growth performance, nutrients digestibility, blood metabolites, intestinal microflora, and morphology in broilers fed corn-wheat-soybean meal diets. Methods: A 2×2 factorial design was used in this study. Four dietary treatments consisted of i) basal diets (corn-wheat-soybean meal based diets without multi-enzyme and phytase), ii) basal diets with phytase (0.05%), iii) basal diets with exogenous multi-enzyme (0.05%), and iv) basal diets with exogenous multi-enzyme including phytase (0.05%). A total of 480 broiler chickens (Ross 308 - one day old) were weighed and allotted to thirty-two cages (15 birds per cage), and chicks were randomly allocated to four dietary treatments. Results: The body weight gain and feed conversion rate were improved by supplementation of exogenous multi-enzyme containing phytase during the finisher period (p<0.05). The birds fed diets with exogenous multi-enzyme containing phytase had a significantly greater digestibility of dry matter, gross energy, crude protein, calcium, and phosphorus compared with birds fed non-supplemented diets (p<0.05). The chickens fed diets with exogenous multi-enzyme containing phytase showed a higher concentration of Ca and P in the serum (p<0.05). The population of Lactobacillus spp., Escherichia coli, and Clostridium were not affected in the ileum and cecum of chickens fed enzyme-supplemented diets. The dietary supplemental exogenous multi-enzyme containing phytase showed a significant improvement in villus height, crypt depth, and villus height and crypt depth ratio, compared to basal diets or dietary supplemental phytase (p<0.05). Conclusion: The supplementation of the exogenous multi-enzyme containing phytase synergistically improved the growth performance, nutrients digestibility, and villus height of the small intestine of broiler chickens fed a corn-wheat-soybean meal based diets.

FBR CFD Simulation of Steam Methanol Reforming Reaction using Intrinsic Kinetic Data of Copper-impregnated Hydrotalcite Catalyst (구리가 함침된 하이드로탈사이트 촉매의 고유 키네틱 데이터를 이용한 메탄올 수증기 개질반응의 고정층 반응기 CFD 시뮬레이션)

  • Jae-hyeok Lee;Dongil Shin;Ho-Geun Ahn
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.78-85
    • /
    • 2023
  • Fixed-bed reactor Computational Fluid Dynamics (CFD) simulation of methanol steam reforming reaction was performed using the intrinsic kinetic data of the copper-impregnated hydrotalcite catalyst. The activation energy of the copper hydrotalcite catalyst obtained from the previous study results was 97.4 kJ/mol, and the pre-exponential was 5.904 × 1010. Process simulation was performed using the calculated values and showed a similar tendency to the experimental results. And the conversion rate according to the change of the reaction temperature (200 - 450 ℃) and the molar ratio of methanol and water was observed using the intrinsic kinetic data. In addition, mass and heat transfer phenomena analysis of a commercial reactor (I.D. 0.05 - 0.1m, Length 1m) was predicted through axial 2D Symmetry simulation using the power law model of the above kinetic constants.

Continuous Hydrogen Production by Heterotrophic Growth of Citrobacter amalonaticus Y19 in Trickle Bed Reactor (Citrobacter amalonaticus Y19의 영양종속 성장을 이용한 Trickle Bed Reactor에서의 연속적인 수소생산)

  • Park, Ji-Young;Lee, Tae-Ho;Oh, You-Kwan;Kim, Jun-Rae;Seol, Eun-Hee;Jung, Gyoo-Yeol;Kim, Mi-Sun;Park, Sung-Hoon
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.458-463
    • /
    • 2005
  • [ $H_2$ ] from CO and water was continuously produced in a trickle bed reactor(TBR) using Citrobacter amalonaticus Y19. When the strain C. was cultivated in a stirred-tank reactor under a chemoheterotrophic and aerobic condition, the high final cell concentration of 13 g/L was obtained at 10 hr. When the culture was switched to an anaerobic condition with the continuous supply of gaseous CO, CO-dependent hydrogenase was fully induced and its hydrogen production activity approached 16 mmol/g cell/hr in 60 hr. The fully induced C. amalonaticus Y19 cells were circulated through a TBR packed with polyurethane foam, and the TBR was operated for more than 20 days for $H_2$ production. As gas retention time decreased or inlet CO partial pressure increased, $H_2$ production rate increased but the conversion from CO to $H_2$ decreased. The maximum $H_2$ production rate obtained was 16 mmol/L/hr at the gas retention time of 25 min and the CO inlet partial pressure of 0.4 atm. The high $H_2$ production rate was attributed to the high cell density in the liquid phase circulating the TBR as well as the high surface area of polyurethane foam used as packing material of the TBR.

Effects of Stock Density and Nutrient Levels on Growth Performance, Serum Profile, Immune Status and Meat Quality in Korean Native Chickens (토종 실용계의 사육밀도 및 사료 내 에너지 수준에 따른 생산성, 혈액, 면역 및 계육 품질에 미치는 영향)

  • Kim, KwangYeol;Jeon, Jin-Joo;Kim, Hyunsoo;Son, Jiseon;Kim, Hee-Jin;You, Are-Sun;Hong, Eui-Chul;Kang, Boseok;Kang, Hwan Ku
    • Korean Journal of Poultry Science
    • /
    • v.48 no.2
    • /
    • pp.91-100
    • /
    • 2021
  • The study determined the effects of stock density (SD) and energy level (EL) on growth performance, serum biochemistry, and meat quality in Korean native chickens. A total of 240 chickens were randomly assigned to one of the four treatments including two stock density (low, 14, and high, 16 chickens per m2) and two energy level (low, 2,950, 3,000, 3050 ME kcal/kg, and high 3,150, 3,200, 3,250 ME kcal/kg, for starter, grower, and finisher, respectively). During the whole period of the experiment, the chickens were fed ad libitum. The greater final body weight and weight gain were achieved in chickens fed high energy diet, whereas the final body weight and weight gain were significantly reduced in high-density treatment compared with the low density. Chickens in low-density groups had a higher feed intake compared with high-density treatment, however, the energy level did not affect the feed intake. An improved overall feed conversion ratio was detected in the high energy treatment. There was a significant interaction between stock density and energy level on cholesterol concentration. The concentration of aspartate transaminase in serum was increased by higher stock density. There was a significant treatment interaction on IgM levels. Moreover, the carcass rate was significantly increased in the high energy level treatment. Based on the findings, we suggest that rearing chickens in low density with high dietary energy levels could be beneficial by improving the growth performance.

Growth Performance and Carcass Characteristics of Two Different Broiler Strains by Different Levels of Metabolizable Energy (사료 내 대사 에너지 수준 차이가 계통이 다른 육계의 성장과 도체 특성에 미치는 영향)

  • Kim, Jong-Seol;Kwon, Jung-Taek;Kim, Je-Hun;Oh, Sung-Taek;Lee, Bo-Keun;Zheng, Lan;Jung, Moon-Sung;An, Byoung-Ki;Kang, Chang-Won
    • Korean Journal of Poultry Science
    • /
    • v.39 no.3
    • /
    • pp.195-205
    • /
    • 2012
  • The objective of this study was to evaluate the effects of different levels of dietary ME on growth performance and carcass characteristics in two different strains of broiler chicken. A total of one thousand, 1-day-old A strain and R strain male chicks were randomly assigned into 8 treatments in a $2{\times}4$ factorial arrangement. They were fed iso-nitrogenic (CP 21%) crumbled diets formulated to contain metabolizable energy (ME) 2,950 to 3,250 kcal/kg in increment of 100 kcal/kg in the starter phase (1 to 21d) and iso-nitrogenic (CP 19%) pelleted diets containing same ME levels as in the finishing phase (22 to 38d). The body weight (BW) gain of chicks fed the lower ME diets (2,950 or 3,050 kcal/kg) were higher than those of the higher ME groups. The dietary energy level showed significant effects on feed intake and feed conversion rate (FCR) from 1 to 38 days of age (p<0.05). With the increment of dietary energy, feed intake tended to be reduced, whereas FCR was improved in the two strains of broiler chickens. The lowest FCR was observed at 3,250 kcal/kg diet groups in both of the two strains from 1 to 38 days of age. Feed intake and BW gain during 38 days were significantly affected by the strain factor. Increasing dietary energy up to 3,250 kcal/kg had no effect on the relative weights of breast meat and abdominal fat. The dietary energy and strains showed significant effects on the dressing percentage. There were no significant differences in various blood profiles except for GPT activity.

Analysis of CO2 Emission Pattern by Use in Residential Sector (가정 부문 이산화탄소 배출량 추이 분석)

  • Yoon, So Won;Lim, Eun Hyouk;Lee, Gyoung Mi;Hong, You Deok
    • Journal of Climate Change Research
    • /
    • v.1 no.3
    • /
    • pp.189-203
    • /
    • 2010
  • The objective of this study is the estimate of $CO_2$ emissions by the energy consumption of functional technology introduced by classifying energy use in households according to functions as well as energy resources. This study also intends to provide the practical basis data in order to establish specific alternatives for GHG mitigation in residential sector with examining the cause analysis affecting $CO_2$ emission increases from 1995 to 2007. The results of this study show a 6.6% increase in the total $CO_2$ from 60,636 thousand tons in 1995 to 64,611 thousand tons in 2007 by using energy in residential sector. Heating is the greatest $CO_2$ emission sector by use, followed electric appliances, cooking, lighting and cooling. Heating sector shows 56.6% reductions from 71.5% in 1995 and as do cooling and electric home appliances, with a 2.4% increase from 0.6% and a 21.8% increase from 14.2% respectively. To analyze factors resulted in $CO_2$ emissions in residential sector, the relevant indicator change rate from 2005 to 2007 was examined. The results find that population, the number of household, housing areas, family patterns, and family income resulted in the $CO_2$ emissions increase in residential sector from 1995 to 2007. On the other hand, carbon intensity and energy intensity contribute to $CO_2$ reduction in residential sector with -2% and -38.7% respectively because of the energy conversion and the improvement of energy efficiency in electronic appliances. This study can be used as a reference when taken account of the reality and considered the introduction of highly effective measures to increase the possibility of mitigation potential in residential sector hereafter.

Ammonia Decomposition over Ni Catalysts Supported on Zeolites for Clean Hydrogen Production (청정수소 생산을 위한 암모니아 분해 반응에서 Ni/Zeolite 촉매의 반응활성에 관한 연구)

  • Jiyu Kim;Kyoung Deok Kim;Unho Jung;Yongha Park;Ki Bong Lee;Kee Young Koo
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.19-26
    • /
    • 2023
  • Hydrogen, a clean energy source free of COx emissions, is poised to replace fossil fuels, with its usage on the rise. Despite its high energy content per unit mass, hydrogen faces limitations in storage and transportation due to its low storage density and challenges in long-term storage. In contrast, ammonia offers a high storage capacity per unit volume and is relatively easy to liquefy, making it an attractive option for storing and transporting large volumes of hydrogen. While NH3 decomposition is an endothermic reaction, achieving excellent low-temperature catalytic activity is essential for process efficiency and cost-effectiveness. The study examined the effects of different zeolite types (5A, NaY, ZSM5) on NH3 decomposition activity, considering differences in pore structure, cations, and Si/Al-ratio. Notably, the 5A zeolite facilitated the high dispersion of Ni across the surface, inside pores, and within the structure. Its low Si/Al ratio contributed to abundant acidity, enhancing ammonia adsorption. Additionally, the presence of Na and Ca cations in the support created medium basic sites that improved N2 desorption rates. As a result, among the prepared catalysts, the 15 wt%Ni/5A catalyst exhibited the highest NH3 conversion and a high H2 formation rate of 23.5 mmol/gcat·min (30,000 mL/gcat·h, 600 ℃). This performance was attributed to the strong metal-support interaction and the enhancement of N2 desorption rates through the presence of medium basic sites.

APPLICATION OF FUZZY SET THEORY IN SAFEGUARDS

  • Fattah, A.;Nishiwaki, Y.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1051-1054
    • /
    • 1993
  • The International Atomic Energy Agency's Statute in Article III.A.5 allows it“to establish and administer safeguards designed to ensure that special fissionable and other materials, services, equipment, facilities and information made available by the Agency or at its request or under its supervision or control are not used in such a way as to further any military purpose; and to apply safeguards, at the request of the parties, to any bilateral or multilateral arrangement, or at the request of a State, to any of that State's activities in the field of atomic energy”. Safeguards are essentially a technical means of verifying the fulfilment of political obligations undertaken by States and given a legal force in international agreements relating to the peaceful uses of nuclear energy. The main political objectives are: to assure the international community that States are complying with their non-proliferation and other peaceful undertakings; and to deter (a) the diversion of afeguarded nuclear materials to the production of nuclear explosives or for military purposes and (b) the misuse of safeguarded facilities with the aim of producing unsafeguarded nuclear material. It is clear that no international safeguards system can physically prevent diversion. The IAEA safeguards system is basically a verification measure designed to provide assurance in those cases in which diversion has not occurred. Verification is accomplished by two basic means: material accountancy and containment and surveillance measures. Nuclear material accountancy is the fundamental IAEA safeguards mechanism, while containment and surveillance serve as important complementary measures. Material accountancy refers to a collection of measurements and other determinations which enable the State and the Agency to maintain a current picture of the location and movement of nuclear material into and out of material balance areas, i. e. areas where all material entering or leaving is measurab e. A containment measure is one that is designed by taking advantage of structural characteristics, such as containers, tanks or pipes, etc. To establish the physical integrity of an area or item by preventing the undetected movement of nuclear material or equipment. Such measures involve the application of tamper-indicating or surveillance devices. Surveillance refers to both human and instrumental observation aimed at indicating the movement of nuclear material. The verification process consists of three over-lapping elements: (a) Provision by the State of information such as - design information describing nuclear installations; - accounting reports listing nuclear material inventories, receipts and shipments; - documents amplifying and clarifying reports, as applicable; - notification of international transfers of nuclear material. (b) Collection by the IAEA of information through inspection activities such as - verification of design information - examination of records and repo ts - measurement of nuclear material - examination of containment and surveillance measures - follow-up activities in case of unusual findings. (c) Evaluation of the information provided by the State and of that collected by inspectors to determine the completeness, accuracy and validity of the information provided by the State and to resolve any anomalies and discrepancies. To design an effective verification system, one must identify possible ways and means by which nuclear material could be diverted from peaceful uses, including means to conceal such diversions. These theoretical ways and means, which have become known as diversion strategies, are used as one of the basic inputs for the development of safeguards procedures, equipment and instrumentation. For analysis of implementation strategy purposes, it is assumed that non-compliance cannot be excluded a priori and that consequently there is a low but non-zero probability that a diversion could be attempted in all safeguards ituations. An important element of diversion strategies is the identification of various possible diversion paths; the amount, type and location of nuclear material involved, the physical route and conversion of the material that may take place, rate of removal and concealment methods, as appropriate. With regard to the physical route and conversion of nuclear material the following main categories may be considered: - unreported removal of nuclear material from an installation or during transit - unreported introduction of nuclear material into an installation - unreported transfer of nuclear material from one material balance area to another - unreported production of nuclear material, e. g. enrichment of uranium or production of plutonium - undeclared uses of the material within the installation. With respect to the amount of nuclear material that might be diverted in a given time (the diversion rate), the continuum between the following two limiting cases is cons dered: - one significant quantity or more in a short time, often known as abrupt diversion; and - one significant quantity or more per year, for example, by accumulation of smaller amounts each time to add up to a significant quantity over a period of one year, often called protracted diversion. Concealment methods may include: - restriction of access of inspectors - falsification of records, reports and other material balance areas - replacement of nuclear material, e. g. use of dummy objects - falsification of measurements or of their evaluation - interference with IAEA installed equipment.As a result of diversion and its concealment or other actions, anomalies will occur. All reasonable diversion routes, scenarios/strategies and concealment methods have to be taken into account in designing safeguards implementation strategies so as to provide sufficient opportunities for the IAEA to observe such anomalies. The safeguards approach for each facility will make a different use of these procedures, equipment and instrumentation according to the various diversion strategies which could be applicable to that facility and according to the detection and inspection goals which are applied. Postulated pathways sets of scenarios comprise those elements of diversion strategies which might be carried out at a facility or across a State's fuel cycle with declared or undeclared activities. All such factors, however, contain a degree of fuzziness that need a human judgment to make the ultimate conclusion that all material is being used for peaceful purposes. Safeguards has been traditionally based on verification of declared material and facilities using material accountancy as a fundamental measure. The strength of material accountancy is based on the fact that it allows to detect any diversion independent of the diversion route taken. Material accountancy detects a diversion after it actually happened and thus is powerless to physically prevent it and can only deter by the risk of early detection any contemplation by State authorities to carry out a diversion. Recently the IAEA has been faced with new challenges. To deal with these, various measures are being reconsidered to strengthen the safeguards system such as enhanced assessment of the completeness of the State's initial declaration of nuclear material and installations under its jurisdiction enhanced monitoring and analysis of open information and analysis of open information that may indicate inconsistencies with the State's safeguards obligations. Precise information vital for such enhanced assessments and analyses is normally not available or, if available, difficult and expensive collection of information would be necessary. Above all, realistic appraisal of truth needs sound human judgment.

  • PDF