DOI QR코드

DOI QR Code

Synergy study on charge transport dynamics in hybrid organic solar cell: Photocurrent mapping and performance analysis under local spectrum

  • Hong, Kai Jeat (School of Applied Physics, Faculty Science and Technology, University Kebangsaan Malaysia) ;
  • Tan, Sin Tee (School of Applied Physics, Faculty Science and Technology, University Kebangsaan Malaysia) ;
  • Chong, Kok-Keong (Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman) ;
  • Lee, Hock Beng (Department of Flexible and Printable Electronics, Chonbuk National University) ;
  • Ginting, Riski Titian (Department of Electrical Engineering, Universitas Prima Indonesia) ;
  • Lim, Fang Sheng (Advanced Engineering Platform, Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia) ;
  • Yap, Chi Chin (School of Applied Physics, Faculty Science and Technology, University Kebangsaan Malaysia) ;
  • Tan, Chun Hui (School of Applied Physics, Faculty Science and Technology, University Kebangsaan Malaysia) ;
  • Chang, Wei Sea (Advanced Engineering Platform, Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia) ;
  • Jumali, Mohammad Hafizuddin Hj (School of Applied Physics, Faculty Science and Technology, University Kebangsaan Malaysia)
  • Received : 2018.08.11
  • Accepted : 2018.10.11
  • Published : 2018.12.31

Abstract

Charge transport dynamics in ZnO based inverted organic solar cell (IOSC) has been characterized with transient photocurrent spectroscopy and localised photocurrent mapping-atomic force microscopy. The value of maximum exciton generation rate was found to vary from $2.6{\times}10^{27}m^{-3}s^{-1}$ ($J_{sat}=79.7A\;m^{-2}$) to $2.9{\times}10^{27}m^{-3}s^{-1}$ ($J_{sat}=90.8A\;m^{-2}$) for devices with power conversion efficiency ranging from 2.03 to 2.51%. These results suggest that nanorods served as an excellent electron transporting layer that provides efficient charge transport and enhances IOSC device performance. The photovoltaic performance of OSCs with various growth times of ZnO nanorods have been analysed for a comparison between AM1.5G spectrum and local solar spectrum. The simulated PCE of all devices operating under local spectrum exhibited extensive improvement with the gain of 13.3-3.7% in which the ZnO nanorods grown at 15 min possess the highest PCE under local solar with the value of 2.82%.

Keywords

Acknowledgement

Supported by : ministry of highest education Malaysia (MOHE)

References

  1. M.G. Kang, M.S. Kim, J. Kim, L.J. Guo, Organic solar cells using nanoimprinted transparent metal electrodes, Adv. Mater. 20 (2008) 4408-4413. https://doi.org/10.1002/adma.200800750
  2. L. Li, J. Liang, H. Gao, Y. Li, X. Niu, X. Zhu, Y. Xiong, Q. Pei, A solid-state intrinsically stretchable polymer solar cell, ACS Appl. Mater. Interfaces 9 (2017) 40523-40532. https://doi.org/10.1021/acsami.7b12908
  3. S. Jung, J. Lee, J. Seo, U. Kim, Y. Choi, H. Park, Development of annealing-free, solution-processable inverted organic solar cells with N-doped graphene electrodes using zinc oxide nanoparticles, Nano Lett. 18 (2) (2018) 1337-1343. https://doi.org/10.1021/acs.nanolett.7b05026
  4. Y. Zhang, N.W. Scarratt, T. Wang, D.G. Lidzey, Fabricating high performance conventional and inverted polymer solar cells by spray coating in air, Vacuum 139 (2017) 154-158. https://doi.org/10.1016/j.vacuum.2016.09.017
  5. D. Chalal, R. Garuz, D. Benachour, J. Boucle, B. Ratier, Influence of an electrode self-protective architecture on the stability of inverted polymer solar cells based on P3HT: PCBM with an active area of 2 cm2, Synth. Met. 212 (2016) 161-166. https://doi.org/10.1016/j.synthmet.2015.12.021
  6. L. Ye, Y. Xiong, Q. Zhang, S. Li, C. Wang, Z. Jiang, J. Hou, W. You, H. Ade, Surpassing 10% Efficiency Benchmark for Nonfullerene Organic Solar Cells by Scalable Coating in Air from Single Nonhalogenated Solvent, Advanced Materials, 2018.
  7. W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, Molecular optimization enables over 13% efficiency in organic solar cells, J. Am. Chem. Soc. 139 (2017) 7148-7151. https://doi.org/10.1021/jacs.7b02677
  8. S.-H. Liao, H.-J. Jhuo, P.-N. Yeh, Y.-S. Cheng, Y.-L. Li, Y.-H. Lee, S. Sharma, S.-A. Chen, Single junction inverted polymer solar cell reaching power conversion efficiency 10.31% by employing dual-doped zinc oxide nano-film as cathode interlayer, Sci. Rep. 4 (2014) 6813.
  9. I. Vangelidis, A. Theodosi, M.J. Beliatis, K. Gandhi, A. Laskarakis, P. Patsalas, S. Logothetidis, S.R.P.P. Silva, E. Lidorikis, Plasmonic Organic Photovoltaics: Unraveling Plasmonic Enhancement for Realistic Cell Geometries, Acs Photonics, 2018.
  10. X. Sun, C. Li, J. Ni, L. Huang, R. Xu, Z. Li, H. Cai, J. Li, Y. Zhang, J. Zhang, A facile two-step interface engineering strategy to boost the efficiency of inverted ternary-blend polymer solar cells over 10%, ACS Sustain. Chem. Eng. 5 (2017) 8997-9005. https://doi.org/10.1021/acssuschemeng.7b01792
  11. J. You, C.C. Chen, L. Dou, S. Murase, H.S. Duan, S.A. Hawks, T. Xu, H.J. Son, L. Yu, G. Li, Metal oxide nanoparticles as an electron‐transport layer in high‐performance and stable inverted polymer solar cells, Adv. Mater. 24 (2012) 5267-5272. https://doi.org/10.1002/adma.201201958
  12. S.B. Ambade, R.B. Ambade, S.H. Eom, M.-J. Baek, S.S. Bagde, R.S. Mane, S.-H. Lee, Co-functionalized organic/inorganic hybrid ZnO nanorods as electron transporting layers for inverted organic solar cells, Nanoscale 8 (2016) 5024-5036. https://doi.org/10.1039/C5NR08849F
  13. R.T. Ginting, H.B. Lee, S.T. Tan, C.H. Tan, M.H.H. Jumali, C.C. Yap, J.-W. Kang, M. Yahaya, A simple approach low-temperature solution process for preparation of bismuth-doped ZnO nanorods and its application in hybrid solar cells, J. Phys. Chem. C 120 (2015) 771-780.
  14. H.F. Oleiwi, A. Zakaria, C.C. Yap, H.A. Abbas, S.T. Tan, H.B. Lee, C.H. Tan, R.T. Ginting, A. Alshanableh, Z.A. Talib, Enhanced photovoltaic performance of CdS-sensitized inverted organic solar cells prepared via a successive ionic layer adsorption and reaction method, AIP Conference Proceedings, AIP Publishing, 2017020007.
  15. H.-C. Chen, S.-W. Lin, J.-M. Jiang, Y.-W. Su, K.-H. Wei, Solution-processed zinc oxide/polyethylenimine nanocomposites as tunable electron transport layers for highly efficient bulk heterojunction polymer solar cells, ACS Appl. Mater. Interfaces 7 (2015) 6273-6281. https://doi.org/10.1021/acsami.5b00521
  16. A.l. Tournebize, G. Mattana, T.r.s. Gorisse, A. Bousquet, G. Wantz, L. Hirsch, S. Chambon, Crucial role of the electron transport layer and UV light on the open-circuit voltage loss in inverted organic solar cells, ACS Appl. Mater. Interfaces 9 (2017) 34131-34138. https://doi.org/10.1021/acsami.7b09059
  17. R.M. Hewlett, M.A. McLachlan, Surface structure modification of ZnO and the impact on electronic properties, Adv. Mater. 28 (2016) 3893-3921. https://doi.org/10.1002/adma.201503404
  18. A. Alshanableh, C.C. Yap, S.T. Tan, H.B. Lee, C.H. Tan, R.T. Ginting, M.H.H. Jumali, Novel hydrothermal approach to functionalize self-oriented twin ZnO nanotube arrays, Mater. Lett. 165 (2016) 75-78. https://doi.org/10.1016/j.matlet.2015.11.114
  19. S.T. Tan, A. Ali Umar, A. Balouch, S. Nafisah, M. Yahaya, C.C. Yap, M. Mat Salleh, I. Kityk, M. Oyama, Ag-ZnO nanoreactor grown on FTO substrate exhibiting high heterogeneous photocatalytic efficiency, ACS Comb. Sci. 16 (2014) 314-320. https://doi.org/10.1021/co400157m
  20. Z.L. Wang, Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology, ACS Nano 2 (2008) 1987-1992. https://doi.org/10.1021/nn800631r
  21. J.Y. Lao, J.G. Wen, Z.F. Ren, Hierarchical ZnO nanostructures, Nano Lett. 2 (2002) 1287-1291. https://doi.org/10.1021/nl025753t
  22. S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties, Nano Res. 4 (2011) 1013-1098. https://doi.org/10.1007/s12274-011-0160-7
  23. E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, G. Boschloo, Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells, J. Phys. Chem. B 110 (2006) 16159-16161. https://doi.org/10.1021/jp062865q
  24. J.-S. Huang, C.-Y. Chou, M.-Y. Liu, K.-H. Tsai, W.-H. Lin, C.-F. Lin, Solution-processed vanadium oxide as an anode interlayer for inverted polymer solar cells hybridized with ZnO nanorods, Org. Electron. 10 (2009) 1060-1065. https://doi.org/10.1016/j.orgel.2009.05.017
  25. S. Chen, C.E. Small, C.M. Amb, J. Subbiah, T.h. Lai, S.W. Tsang, J.R. Manders, J.R. Reynolds, F. So, Inverted polymer solar cells with reduced interface recombination, Adv. Energy Mater. 2 (2012) 1333-1337. https://doi.org/10.1002/aenm.201200184
  26. E. Polydorou, A. Zeniou, D. Tsikritzis, A. Soultati, I. Sakellis, S. Gardelis, T.A. Papadopoulos, J. Briscoe, L.C. Palilis, S. Kennou, Surface passivation effect by fluorine plasma treatment on ZnO for efficiency and lifetime improvement of inverted polymer solar cells, J. Mater. Chem. A 4 (2016) 11844-11858. https://doi.org/10.1039/C6TA03594A
  27. D.C. Coffey, O.G. Reid, D.B. Rodovsky, G.P. Bartholomew, D.S. Ginger, Mapping local photocurrents in polymer/fullerene solar cells with photoconductive atomic force microscopy, Nano Lett. 7 (2007) 738-744. https://doi.org/10.1021/nl062989e
  28. C. Groves, O.G. Reid, D.S. Ginger, Heterogeneity in polymer solar cells: local morphology and performance in organic photovoltaics studied with scanning probe microscopy, Accounts Chem. Res. 43 (2010) 612-620. https://doi.org/10.1021/ar900231q
  29. K.-K. Chong, P.P. Khlyabich, K.-J. Hong, M. Reyes-Martinez, B.P. Rand, Y.-L. Loo, Comprehensive method for analyzing the power conversion efficiency of organic solar cells under different spectral irradiances considering both photonic and electrical characteristics, Appl. Energy 180 (2016) 516-523. https://doi.org/10.1016/j.apenergy.2016.08.002
  30. R. Fuji, Conductive atomic force microscopy, Compendium of Surface and Interface Analysis, Springer, 2018, pp. 51-54.
  31. K. Wang, C. Liu, T. Meng, C. Yi, X. Gong, Inverted organic photovoltaic cells, Chem. Soc. Rev. 45 (2016) 2937-2975. https://doi.org/10.1039/C5CS00831J
  32. L. Huo, T. Liu, X. Sun, Y. Cai, A.J. Heeger, Y. Sun, Single‐Junction organic solar cells based on a novel wide‐bandgap polymer with efficiency of 9.7%, Adv. Mater. 27 (2015) 2938-2944. https://doi.org/10.1002/adma.201500647
  33. G. ASTM, 173-03: Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 Tilted Surface, ASTM International, West Conshohoken, PA, 2003.
  34. T. Minemoto, S. Fukushige, H. Takakura, Difference in the outdoor performance of bulk and thin-film silicon-based photovoltaic modules, Sol. Energy Mater. Sol. Cell. 93 (2009) 1062-1065. https://doi.org/10.1016/j.solmat.2008.11.051
  35. G. Nofuentes, B. Garcia-Domingo, J. Munoz, F. Chenlo, Analysis of the dependence of the spectral factor of some PV technologies on the solar spectrum distribution, Appl. Energy 113 (2014) 302-309. https://doi.org/10.1016/j.apenergy.2013.07.044
  36. A. Teke, U. Ozgur, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause, H. Everitt, Excitonic fine structure and recombination dynamics in single-crystalline ZnO, Phys. Rev. B 70 (2004) 195207. https://doi.org/10.1103/PhysRevB.70.195207
  37. M.Y. Ameen, P. Shamjid, T. Abhijith, T. Radhakrishnan, V. Reddy, Stability enhancement of P3HT: PCBM polymer solar cells using thermally evaporated MoO3 anode buffer layer, Phys. B Condens. Matter 530 (2018) 201-207. https://doi.org/10.1016/j.physb.2017.11.050
  38. F. Otieno, B.K. Mutuma, M. Airo, K. Ranganathan, R. Erasmus, N. Coville, D. Wamwangi, Enhancement of organic photovoltaic device performance via P3HT: PCBM solution heat treatment, Thin Solid Films 625 (2017) 62-69. https://doi.org/10.1016/j.tsf.2017.01.047
  39. R. Raja, W.-S. Liu, C.-Y. Hsiow, S.-P. Rwei, W.-Y. Chiu, L. Wang, Terthiophene-C 60 dyads as donor/acceptor compatibilizers for developing highly stable P3HT/PCBM bulk heterojunction solar cells, J. Mater. Chem. A 3 (2015) 14401-14408. https://doi.org/10.1039/C5TA02953H
  40. C. Groves, J.C. Blakesley, N.C. Greenham, Effect of charge trapping on geminate recombination and polymer solar cell performance, Nano Lett. 10 (2010) 1063-1069. https://doi.org/10.1021/nl100080r
  41. Z. Ma, Z. Tang, E. Wang, M.R. Andersson, O. Inganas, F. Zhang, Influences of surface roughness of ZnO electron transport layer on the photovoltaic performance of organic inverted solar cells, J. Phys. Chem. C 116 (2012) 24462-24468. https://doi.org/10.1021/jp308480u