Acknowledgement
Supported by : ministry of highest education Malaysia (MOHE)
References
- M.G. Kang, M.S. Kim, J. Kim, L.J. Guo, Organic solar cells using nanoimprinted transparent metal electrodes, Adv. Mater. 20 (2008) 4408-4413. https://doi.org/10.1002/adma.200800750
- L. Li, J. Liang, H. Gao, Y. Li, X. Niu, X. Zhu, Y. Xiong, Q. Pei, A solid-state intrinsically stretchable polymer solar cell, ACS Appl. Mater. Interfaces 9 (2017) 40523-40532. https://doi.org/10.1021/acsami.7b12908
- S. Jung, J. Lee, J. Seo, U. Kim, Y. Choi, H. Park, Development of annealing-free, solution-processable inverted organic solar cells with N-doped graphene electrodes using zinc oxide nanoparticles, Nano Lett. 18 (2) (2018) 1337-1343. https://doi.org/10.1021/acs.nanolett.7b05026
- Y. Zhang, N.W. Scarratt, T. Wang, D.G. Lidzey, Fabricating high performance conventional and inverted polymer solar cells by spray coating in air, Vacuum 139 (2017) 154-158. https://doi.org/10.1016/j.vacuum.2016.09.017
- D. Chalal, R. Garuz, D. Benachour, J. Boucle, B. Ratier, Influence of an electrode self-protective architecture on the stability of inverted polymer solar cells based on P3HT: PCBM with an active area of 2 cm2, Synth. Met. 212 (2016) 161-166. https://doi.org/10.1016/j.synthmet.2015.12.021
- L. Ye, Y. Xiong, Q. Zhang, S. Li, C. Wang, Z. Jiang, J. Hou, W. You, H. Ade, Surpassing 10% Efficiency Benchmark for Nonfullerene Organic Solar Cells by Scalable Coating in Air from Single Nonhalogenated Solvent, Advanced Materials, 2018.
- W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, Molecular optimization enables over 13% efficiency in organic solar cells, J. Am. Chem. Soc. 139 (2017) 7148-7151. https://doi.org/10.1021/jacs.7b02677
- S.-H. Liao, H.-J. Jhuo, P.-N. Yeh, Y.-S. Cheng, Y.-L. Li, Y.-H. Lee, S. Sharma, S.-A. Chen, Single junction inverted polymer solar cell reaching power conversion efficiency 10.31% by employing dual-doped zinc oxide nano-film as cathode interlayer, Sci. Rep. 4 (2014) 6813.
- I. Vangelidis, A. Theodosi, M.J. Beliatis, K. Gandhi, A. Laskarakis, P. Patsalas, S. Logothetidis, S.R.P.P. Silva, E. Lidorikis, Plasmonic Organic Photovoltaics: Unraveling Plasmonic Enhancement for Realistic Cell Geometries, Acs Photonics, 2018.
- X. Sun, C. Li, J. Ni, L. Huang, R. Xu, Z. Li, H. Cai, J. Li, Y. Zhang, J. Zhang, A facile two-step interface engineering strategy to boost the efficiency of inverted ternary-blend polymer solar cells over 10%, ACS Sustain. Chem. Eng. 5 (2017) 8997-9005. https://doi.org/10.1021/acssuschemeng.7b01792
- J. You, C.C. Chen, L. Dou, S. Murase, H.S. Duan, S.A. Hawks, T. Xu, H.J. Son, L. Yu, G. Li, Metal oxide nanoparticles as an electron‐transport layer in high‐performance and stable inverted polymer solar cells, Adv. Mater. 24 (2012) 5267-5272. https://doi.org/10.1002/adma.201201958
- S.B. Ambade, R.B. Ambade, S.H. Eom, M.-J. Baek, S.S. Bagde, R.S. Mane, S.-H. Lee, Co-functionalized organic/inorganic hybrid ZnO nanorods as electron transporting layers for inverted organic solar cells, Nanoscale 8 (2016) 5024-5036. https://doi.org/10.1039/C5NR08849F
- R.T. Ginting, H.B. Lee, S.T. Tan, C.H. Tan, M.H.H. Jumali, C.C. Yap, J.-W. Kang, M. Yahaya, A simple approach low-temperature solution process for preparation of bismuth-doped ZnO nanorods and its application in hybrid solar cells, J. Phys. Chem. C 120 (2015) 771-780.
- H.F. Oleiwi, A. Zakaria, C.C. Yap, H.A. Abbas, S.T. Tan, H.B. Lee, C.H. Tan, R.T. Ginting, A. Alshanableh, Z.A. Talib, Enhanced photovoltaic performance of CdS-sensitized inverted organic solar cells prepared via a successive ionic layer adsorption and reaction method, AIP Conference Proceedings, AIP Publishing, 2017020007.
- H.-C. Chen, S.-W. Lin, J.-M. Jiang, Y.-W. Su, K.-H. Wei, Solution-processed zinc oxide/polyethylenimine nanocomposites as tunable electron transport layers for highly efficient bulk heterojunction polymer solar cells, ACS Appl. Mater. Interfaces 7 (2015) 6273-6281. https://doi.org/10.1021/acsami.5b00521
- A.l. Tournebize, G. Mattana, T.r.s. Gorisse, A. Bousquet, G. Wantz, L. Hirsch, S. Chambon, Crucial role of the electron transport layer and UV light on the open-circuit voltage loss in inverted organic solar cells, ACS Appl. Mater. Interfaces 9 (2017) 34131-34138. https://doi.org/10.1021/acsami.7b09059
- R.M. Hewlett, M.A. McLachlan, Surface structure modification of ZnO and the impact on electronic properties, Adv. Mater. 28 (2016) 3893-3921. https://doi.org/10.1002/adma.201503404
- A. Alshanableh, C.C. Yap, S.T. Tan, H.B. Lee, C.H. Tan, R.T. Ginting, M.H.H. Jumali, Novel hydrothermal approach to functionalize self-oriented twin ZnO nanotube arrays, Mater. Lett. 165 (2016) 75-78. https://doi.org/10.1016/j.matlet.2015.11.114
- S.T. Tan, A. Ali Umar, A. Balouch, S. Nafisah, M. Yahaya, C.C. Yap, M. Mat Salleh, I. Kityk, M. Oyama, Ag-ZnO nanoreactor grown on FTO substrate exhibiting high heterogeneous photocatalytic efficiency, ACS Comb. Sci. 16 (2014) 314-320. https://doi.org/10.1021/co400157m
- Z.L. Wang, Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology, ACS Nano 2 (2008) 1987-1992. https://doi.org/10.1021/nn800631r
- J.Y. Lao, J.G. Wen, Z.F. Ren, Hierarchical ZnO nanostructures, Nano Lett. 2 (2002) 1287-1291. https://doi.org/10.1021/nl025753t
- S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties, Nano Res. 4 (2011) 1013-1098. https://doi.org/10.1007/s12274-011-0160-7
- E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, G. Boschloo, Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells, J. Phys. Chem. B 110 (2006) 16159-16161. https://doi.org/10.1021/jp062865q
- J.-S. Huang, C.-Y. Chou, M.-Y. Liu, K.-H. Tsai, W.-H. Lin, C.-F. Lin, Solution-processed vanadium oxide as an anode interlayer for inverted polymer solar cells hybridized with ZnO nanorods, Org. Electron. 10 (2009) 1060-1065. https://doi.org/10.1016/j.orgel.2009.05.017
- S. Chen, C.E. Small, C.M. Amb, J. Subbiah, T.h. Lai, S.W. Tsang, J.R. Manders, J.R. Reynolds, F. So, Inverted polymer solar cells with reduced interface recombination, Adv. Energy Mater. 2 (2012) 1333-1337. https://doi.org/10.1002/aenm.201200184
- E. Polydorou, A. Zeniou, D. Tsikritzis, A. Soultati, I. Sakellis, S. Gardelis, T.A. Papadopoulos, J. Briscoe, L.C. Palilis, S. Kennou, Surface passivation effect by fluorine plasma treatment on ZnO for efficiency and lifetime improvement of inverted polymer solar cells, J. Mater. Chem. A 4 (2016) 11844-11858. https://doi.org/10.1039/C6TA03594A
- D.C. Coffey, O.G. Reid, D.B. Rodovsky, G.P. Bartholomew, D.S. Ginger, Mapping local photocurrents in polymer/fullerene solar cells with photoconductive atomic force microscopy, Nano Lett. 7 (2007) 738-744. https://doi.org/10.1021/nl062989e
- C. Groves, O.G. Reid, D.S. Ginger, Heterogeneity in polymer solar cells: local morphology and performance in organic photovoltaics studied with scanning probe microscopy, Accounts Chem. Res. 43 (2010) 612-620. https://doi.org/10.1021/ar900231q
- K.-K. Chong, P.P. Khlyabich, K.-J. Hong, M. Reyes-Martinez, B.P. Rand, Y.-L. Loo, Comprehensive method for analyzing the power conversion efficiency of organic solar cells under different spectral irradiances considering both photonic and electrical characteristics, Appl. Energy 180 (2016) 516-523. https://doi.org/10.1016/j.apenergy.2016.08.002
- R. Fuji, Conductive atomic force microscopy, Compendium of Surface and Interface Analysis, Springer, 2018, pp. 51-54.
- K. Wang, C. Liu, T. Meng, C. Yi, X. Gong, Inverted organic photovoltaic cells, Chem. Soc. Rev. 45 (2016) 2937-2975. https://doi.org/10.1039/C5CS00831J
- L. Huo, T. Liu, X. Sun, Y. Cai, A.J. Heeger, Y. Sun, Single‐Junction organic solar cells based on a novel wide‐bandgap polymer with efficiency of 9.7%, Adv. Mater. 27 (2015) 2938-2944. https://doi.org/10.1002/adma.201500647
- G. ASTM, 173-03: Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 Tilted Surface, ASTM International, West Conshohoken, PA, 2003.
- T. Minemoto, S. Fukushige, H. Takakura, Difference in the outdoor performance of bulk and thin-film silicon-based photovoltaic modules, Sol. Energy Mater. Sol. Cell. 93 (2009) 1062-1065. https://doi.org/10.1016/j.solmat.2008.11.051
- G. Nofuentes, B. Garcia-Domingo, J. Munoz, F. Chenlo, Analysis of the dependence of the spectral factor of some PV technologies on the solar spectrum distribution, Appl. Energy 113 (2014) 302-309. https://doi.org/10.1016/j.apenergy.2013.07.044
- A. Teke, U. Ozgur, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause, H. Everitt, Excitonic fine structure and recombination dynamics in single-crystalline ZnO, Phys. Rev. B 70 (2004) 195207. https://doi.org/10.1103/PhysRevB.70.195207
- M.Y. Ameen, P. Shamjid, T. Abhijith, T. Radhakrishnan, V. Reddy, Stability enhancement of P3HT: PCBM polymer solar cells using thermally evaporated MoO3 anode buffer layer, Phys. B Condens. Matter 530 (2018) 201-207. https://doi.org/10.1016/j.physb.2017.11.050
- F. Otieno, B.K. Mutuma, M. Airo, K. Ranganathan, R. Erasmus, N. Coville, D. Wamwangi, Enhancement of organic photovoltaic device performance via P3HT: PCBM solution heat treatment, Thin Solid Films 625 (2017) 62-69. https://doi.org/10.1016/j.tsf.2017.01.047
- R. Raja, W.-S. Liu, C.-Y. Hsiow, S.-P. Rwei, W.-Y. Chiu, L. Wang, Terthiophene-C 60 dyads as donor/acceptor compatibilizers for developing highly stable P3HT/PCBM bulk heterojunction solar cells, J. Mater. Chem. A 3 (2015) 14401-14408. https://doi.org/10.1039/C5TA02953H
- C. Groves, J.C. Blakesley, N.C. Greenham, Effect of charge trapping on geminate recombination and polymer solar cell performance, Nano Lett. 10 (2010) 1063-1069. https://doi.org/10.1021/nl100080r
- Z. Ma, Z. Tang, E. Wang, M.R. Andersson, O. Inganas, F. Zhang, Influences of surface roughness of ZnO electron transport layer on the photovoltaic performance of organic inverted solar cells, J. Phys. Chem. C 116 (2012) 24462-24468. https://doi.org/10.1021/jp308480u