• Title/Summary/Keyword: end moment

Search Result 410, Processing Time 0.02 seconds

Load Carrying Capacities of Cold Formed Steel Structural Columns subject to Combined Axial Load and Bending Moment (압축과 휨의 조합하중을 받는 냉간성형강 기둥의 내력성능)

  • Shin, Tae Song
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.83-92
    • /
    • 2005
  • This paper is to evaluate the load carrying capacities of cold-formed steel columns subject to combined axial load and bending moment. A combined strength experiment is carried out using full-scale 24 specimens of lipped channel section with embossment in web. An eccentric axial load is applied in varying member-length and eccentric distance which produces an end-moment of the column. The predictions of the AISI specification and the Eurocode are compared with the experimental results, and it is shown that all of these codes are reasonable on the whole in relation to the experimental results.

Lateral buckling formula of stepped beams with length-to-height ratio factor

  • Park, Jong Sup
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.745-757
    • /
    • 2004
  • Lateral-torsional buckling moment resistances of I-shaped stepped beams with continuous lateral top-flange bracing under a single point load on the top flange and negative end moments were investigated. Stepped beam factors and a moment gradient correction factor suggested by Park et al. (2003, 2004) were used to develop new lateral buckling formula for beam designs. From the investigation of finite element analysis (FEA), new lateral buckling formula of beams with singly or doubly stepped member changes and with continuous lateral top-flange bracing subjected to a single point load on top flange and end moments were developed. The new design equation includes the length-to-height ratio factor to account for the increase of lateral-torsional buckling moment resistance as the increase of length-to-height ratio of stepped beams. The calculation examples for obtaining lateral-torsional buckling moment resistance using the new design equation indicate that engineers should easily determine the buckling capacity of the stepped beams.

Experimental behaviour of extended end-plate composite beam-to-column joints subjected to reversal of loading

  • Hu, Xiamin;Zheng, Desheng;Yang, Li
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.307-321
    • /
    • 2006
  • This paper is concerned with the behaviour of steel and concrete composite joints subjected to reversal of loading. Three cruciform composite joint specimens and one bare steel joint specimen were tested so that one side of the beam-to-column connection was under negative moment and another side under positive moment. The steelwork beam-to-column connections were made of bolted end plate with an extended haunch section. Composite slabs employing metal decking were used for all the composite joint specimens. The moment-rotation relationships for the joints were obtained experimentally. Details of the experimental observations and results were reported.

Bridge-type structures analysis using RMP concept considering shear and bending flexibility

  • Hosseini-Tabatabaei, Mahmoud-Reza;Rezaiee-Pajand, Mohmmad;Mollaeinia, Mahmoud R.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.189-199
    • /
    • 2020
  • Researchers have elaborated several accurate methods to calculate member-end rotations or moments, directly, for bridge-type structures. Recently, the concept of rotation and moment propagation (RMP) has been presented considering bending flexibility, only. Through which, in spite of moment distribution method, all joints are free resulting in rotation and moment emit throughout the structure similar to wave motion. This paper proposes a new set of closed-form equations to calculate member-end rotation or moment, directly, comprising both shear and bending flexibility. Furthermore, the authors program the algorithm of Timoshenko beam theory cooperated with the finite element. Several numerical examples, conducted on the procedures, show that the method is superior in not only the dominant algorithm but also the preciseness of results.

A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections

  • Ozkilic, Yasin O.
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.353-370
    • /
    • 2020
  • This paper describes a new type of replaceable fuse for moment resisting frames. Column-tree connections with beam splice connections are frequently preferred in the moment resisting frames since they eliminate field welding and provide good quality. In the column-tree connections, a part of the beam is welded to the column in the shop and the rest of the beam is bolted with the splice connection in the field. In this study, a replaceable reduced beam section (R-RBS) connection is proposed in order to eliminate welding process and facilitate assembly at the site. In the proposed R-RBS connection, one end is connected by a beam splice connection to the beam and the other end is connected by a bolted end-plate connection to the column. More importantly is that the proposed R-RBS connection allows the replacement of the damaged R-RBS easily right after an earthquake. Pursuant to this goal, experimental and numerical studies have been undertaken to investigate the performance of the R-RBS connection. An experimental study on the RBS connection was used to substantiate the numerical model using ABAQUS, a commercially available finite element software. Additionally, five different finite element models were developed to conduct a parametric study. The results of the analysis were compared in terms of the moment and energy absorption capacities, PEEQ, rupture and tri-axiality indexes. The design process as well as the optimum dimensions of the R-RBS connections are presented. It was also demonstrated that the proposed R-RBS connection satisfies AISC criteria based on the nonlinear finite element analysis results.

Analysis of Current Distribution on Cylinders with End Cap (끝단면에 ?을 갖는 원통주의 전류분포 해석)

  • 이강호;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.11
    • /
    • pp.879-885
    • /
    • 1990
  • An intergral equation is derived for surface current distribution of cylinders with end cap using quasistatic approximation method. The moment method is applied for numerical solution. Point matching method using Cubic B-spline function as a basis function, delta function as a weighting function is applied for moment method. And also, the influencial relation in accordance with structural variation is analized in case of spheroidal end up cap type and flat type.

  • PDF

Experimental investigation of force-distribution in high-strength bolts in extended end-plate connections

  • Abdalla, K.M.;Abu-Farsakh, G.A.R.;Barakat, S.A.
    • Steel and Composite Structures
    • /
    • v.7 no.2
    • /
    • pp.87-103
    • /
    • 2007
  • This paper presents some of the results from an experimental research project on the behavior of extended end-plate connections subjected to moment conducted at the Structural Laboratory of Jordan University of Science and Technology. Since the connection behavior affects the structural frame response, it must be included in the global analysis and design. In this study, the behavior of six full-scale stiffened and unstiffened cantilever connections of HEA- and IPE-sections has been investigated. Eight high strength bolts were used to connect the extended end-plate to the column flange in each case. Strain gauges were installed inside each of the top six bolts in order to obtain experimentally the actual tension force induced within each bolt. Then the connection behavior is characterized by the tension force in the bolt, extended end-plate behavior, moment-rotation relation, and beam and column strains. Some or all of these characteristics are used by many Standards; therefore, it is essential to predict the global behavior of column-beam connections by their geometrical and mechanical properties. The experimental test results are compared with two theoretical (equal distribution and linear distribution) approaches in order to assess the capabilities and accuracy of the theoretical models. A simple model of the joint is established and the essential parameters to predict its strength and deformational behavior are determined. The equal distribution method reasonably determined the tension forces in the upper two bolts while the linear distribution method underestimated them. The deformation behavior of the tested connections was characterized by separation of the column-flange from the extended end-plate almost down to the level of the upper two bolts of the lower group and below this level the two parts remained in full contact. The neutral axis of the deformed joint is reasonably assumed to pass very close to the line joining the upper two bolts of the lower group. Smooth monotonic moment-rotation relations for the all tested frames were observed.

Occupant Analysis and Seat Design to Reduce the Neck Injury for Rear End Impact (후방추돌시 목상해를 고려한 승객거동해석 및 좌석설계)

  • 신문균;박기종;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.182-194
    • /
    • 1999
  • Occupant injury in rear end impact is rapidly becoming one of the most aggravating traffic safety problems with high human suffering and societal costs. Although rear end impact occurs at relatively low speed , it may cause permanent disability due to neck injuries resulting from an abrupt moment, shear force , and tension/compression force at the occipital condyles. The analysis is performed for a combined occupant-eat model response, using the SAFE(Safety Analysis for occupant crash Environment) computer program. The computational results are verified by those from sled tests. A parameter study is conducted for many physical and mechanical properties. Seat design has been performed based on the design of experiment process with respect to five parameters; seat-back upholstery stiffness, torsional stiffness of the seat-back. An orthogonal array is selected from the parameter study. A good design has been found from the analysis results based on the orthogonal array. The results show that reductions of stiffness in seat-back upholstery and joint are the most effective for preventing neck injuries.

  • PDF

An Experimental study on the Bolted Moment Connection between H-Beam and CFT Column (CFT기둥과 H-형강보의 볼트 접합부에 관한 실험적 연구)

  • Park, Soon Kyu;Roh, Hawn Kewn
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.789-799
    • /
    • 1998
  • The purpose of this study is to propose the prototypes of bolted end plate moment connection between CFT column and H-beam sections. Nine different types of bolt are designed in this study. The shapes of those bolt are straight. bent, hooked or stud-type. The end plate moment connection between CFT column and H-beam sections which are jointed by those bolts are studied experimentally to compare their performances. The simple beam bending tests are carried out to investigate the structural behavior of beam-to-column connections. The experimental results show that some of the bolted end plate connection types have quite good performance in the structural behavior but still have a lot of week points to be solved for the efficiency of construction.

  • PDF

Cyclic behavior of extended end-plate connections with European steel shapes

  • Akgonen, Aliriza I.;Yorgun, Cavidan;Vatansever, Cuneyt
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1185-1201
    • /
    • 2015
  • The aim of this experimental research is to investigate the conformity of the four-bolt unstiffened moment end-plate connections consisting of European steel sections which do not meet the limitations specified for beam flange width and overall beam depth in ANSI/AISC 358-10 to the requirements of seismic application. However, the connections are satisfactory with the limitations required by Turkish Earthquake Code. For this purpose, four test specimens were designed and cyclic load was applied to three specimens while one was tested under monotonic loading to provide data for the calibration of the analytical models. The moment-rotation hysteresis loops and the failure modes for all test specimens are presented. A full three-dimensional finite element model is also developed for each test specimen for use to predict their behavior and to provide a tool for generating subsequent extensive parametric studies. The test results show that all specimens performed well in terms of rotation capacity and strength. Finite element models are found to be capable of approximating the cyclic behavior of the extended end-plate connection specimens.