• Title/Summary/Keyword: end bearing pile

Search Result 138, Processing Time 0.026 seconds

Bearing Capacity Study for Small-Scale Testing of Rotary Pile with Helix Plate (축소모형 로타리 파일의 나선날개에 따른 지지성능에 관한 연구)

  • Shin, Eun-Chul;Kim, Kyeong-Sig;Moon, Hyeong-Rok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.1
    • /
    • pp.37-46
    • /
    • 2016
  • Rotary pile consists a single or multiple helix plate and it is installed into the ground using the rotation of the helix plate. Rotary pile in soft ground is able to be supported by pile shaft and helix plate. When the pile is installed into hard layer relatively, the end bearing capacity is possible to be increased by the lower helix plate. In this paper, small-size rotary piles were manufactured with using steel pipe which is reduced to 1/5 size of the rotary pile on the construction field. Pile load test was carried out on the foundation soil which was formed by weathered soft soil. The bearing capacity of small-scale piles depends on the number of helix plate, the length of plate diameter, and an interval of plates, respectively. The bearing capacity of pile increases about 40% with 3 helix plate and it is also confirmed that the bearing capacity is improved about 10% as the increment of plate interval.

Bearing Capacity of In-situ Cast Piles in Weak Sedimentary Rocks (미고결 퇴적암층에서의 현장타설말뚝 지지력 특성 연구)

  • Sim, Dong-Hyun;Kim, Ki-Seop;Yu, Seok-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.100-109
    • /
    • 2004
  • Is this study, results of static pile load tests of in-situ cast piles in weak or uncemented sedimentary rock layers have been analyzed and presented. Consdierations on the characteristics of soils sedimentary rocks have been made. From the measurements of strain gauges and extensometers the relationship of unit skim friction versus displacement and that of unit end bearing versus displacement have been obatined to verity the characteristics of bearing capacity of this uncemented sedimentary rock layers. Also, a comparison has been made between ultimate skin friction in compression and tension.

  • PDF

A proposal for the analysis of the PDA testing results of the extra-long piles (초장대말뚝의 동재하시험 해석방안)

  • Lee, Myung-Whan;Hong, Hun-Sung;Kim, Sung-Hoi;Jun, Young-Suk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1269-1278
    • /
    • 2006
  • These days the construction of extra-long piles increases. It is not unusual to install piles whose length exceed 45m. In such cases, the estimated value of negative skin friction becomes larger, often larger than the design load. In order to be sure of the safety of the super structure, the magnitude of the positive skin friction and the base bearing capacity should be known. In practice dynamic pile loading tests using PDA is the only possible measure to meet this requirement. However the analysis of dynamic pile loading test for such extra-long piles requires a thorough understanding of the pile-soil behaviour. In this paper, a new method to evaluate the positive skin friction and end bearing capacity from the normally performed PDA test is proposed. The proposed method was verified by performing specially designed pilot testings.

  • PDF

Field test and research on shield cutting pile penetrating cement soil single pile composite foundation

  • Ma, Shi-ju;Li, Ming-yu;Guo, Yuan-cheng;Safaei, Babak
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.513-521
    • /
    • 2020
  • In this paper, due to the need for cutting cement-soil group pile composite foundation under the 7-story masonry structure of Zhenghe District and the shield tunnel of Zhengzhou Metro Line 5, a field test was conducted to directly cut cement-soil single pile composite foundation with diameter Ф=500 mm. Research results showed that the load transfer mechanism of composite foundation was not changed before and after shield tunnel cut the pile, and pile body and the soil between piles was still responsible for overburden load. The construction disturbance of shield cutting pile is a complicated mechanical process. The load carried by the original pile body was affected by the disturbance effect of pile cutting construction. Also, the fraction of the load carried by the original pile body was transferred to the soil between the piles and therefore, the bearing capacity of composite foundation was not decreased. Only the fractions of the load carried by pile and the soil between piles were distributed. On-site monitoring results showed that the settlement of pressure-bearing plates produced during shield cutting stage accounted for about 7% of total settlement. After the completion of pile cutting, the settlements of bearing plates generated by shield machine during residual pile composite foundation stage and shield machine tail were far away from residual pile composite foundation stage which accounted for about 15% and 74% of total settlement, respectively. In order to reduce the impact of shield cutting pile construction on the settlement of upper composite foundation, it was recommended to take measures such as optimization of shield construction parameters, radial grouting reinforcement and "clay shock" grouting within the disturbance range of shield cutting pile construction. Before pile cutting, the pile-soil stress ratio n of composite foundation was 2.437. After the shield cut pile is completed, the soil around the lining structure is gradually consolidated and reshaped, and residual pile composite foundation reaches a new state of force balance. This was because the condensation of grouting layer could increase the resistance of remaining pile end and friction resistance of the side of the pile.

Comparison of the methods used in determining the pile design load (말뚝의 설계하중 결정방법에 대한 비교)

  • 이명환;윤성진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.03a
    • /
    • pp.69-102
    • /
    • 1992
  • The estimation of pile bearing capacity is important since the design details are determined from the result. There are numerous ways of determining the pile design load, but only few of them are chosen in the actual design. According to the recent investigation in Korea, the formulae proposed by Meyerhof based on the SPT N values are most frequently chosen in the design stage. During construction pile driving formulae are used and sometimes the pile loading tests are performed. In this paper the three methods are studied and compared. It is concluded that except the estimation made by pile loading test, the reliability of estimation is very poor. And the analysis of pile loading test would involve serious errors unless the end bearing capacity is measured separatly from the skin friction capacity. It is thus suggested that the separate measurement of end bearing capacity and skin friction capacity is the most reliable way of determining the pile design load.

  • PDF

Bearing Capacity of In-situ Pile Installed using Pulse Power (펄스파워를 이용한 현장타설말뚝의 지지력 특성)

  • Kim, Tae-Hoon;Chai, Soo-Geun;Jeong, Gyu-Geom
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.521-527
    • /
    • 2005
  • In the past decades, complain about ground vibration and noise induced by pile driving has been quickly increased. Because of that, auger drilled piling methods have frequently used specially in urban area. However, the present auger drilled piling methods induce inevitable ground disturbance as well as a certain degree of vibration and noise due to the final hammering. For these reasons, a new auger drilled piling method is required to be developed. This paper introduces PDT(Pulse Discharge Technology) piling method and presents the characteristics of bearing capacity. The PDT piling method is to install in-situ piles using electric power so called Pulse. The pile installed by PDT appears to be able to develop shaft and end bearing capacity efficiently.

  • PDF

Skin Friction and End Bearing Resistances of Rock-socketed Piles Observed in Bi-directional Pile Load Tests (양방향 재하시험 결과를 이용한 암반소켓 현장타설말뚝의 주면 마찰력과 선단 지지력)

  • Song, Myung-Jun;Park, Yung-Ho;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.7
    • /
    • pp.17-36
    • /
    • 2013
  • In this paper, the empirical relations of skin friction and end bearing resistance with the results of site investigation in soft rock are proposed through the analysis of bi-directional pile load tests of rock socketed drilled shafts performed at large offshore bridge foundations and high-rise building projects (13 test piles in 4 projects). The site investigation and drilling for bi-directional pile load tests were performed at the centers of test piles, and f-w curves for skin friction and q-w curves for end bearing were plotted based on load-transfer measurements. From the above curves, the empirical relations of skin friction and end bearing resistance with the results of site investigation depending on the mobilized displacement are determined by multiple regression analysis and compared with previous studies. Since the f-w and q-w curves of rock-socketed piles in Korea show hardening behavior according to mobilized displacement, the developed empirical relations by the mobilized displacement are more reasonable than those of previous studies which could not consider the mobilized displacement and suggested the ultimate capacity with unconfined compressive strength only. Particularly, the developed equations correlated with unconfined compressive strength show the best correlations among the equations correlated with other parameters.

Study on the Bearing Capacity of Helical Pile through Field Load Tests (현장재하시험을 통한 헬리컬파일의 지지력에 관한 연구)

  • Kwon, Gi-Ryeol;Jang, Jeong-Wook;Cho, Song-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.11
    • /
    • pp.669-675
    • /
    • 2020
  • This research has focused on comparing the capacity predicted by the theoretical formula with the one measured by field load tests to examine characteristics of the bearing capacity of a helical pile. The helical pile is featured by a central shaft with one or more helical-shaped bearing plates. Being established by a small rotary attached to an excavator that applies toque, the helical piles can be readily constructed at narrow sites, especially in an urban area with relatively less noise than the others requiring driving and excavation. Although many cases of the helical pile constructions can be recently found, the bearing capacity of the pile has been limitedly studied. To this end, this contribution analyzes and presents comprehensive results of the ten field loading tests with an application of different parameters depending on joint condition and specification of the helical piles, and types of tests and grouting.

Evaluation of Design Parameters for Axial Bearing Capacity of Drilled Shafts by Bi-directional Loading Tests (양방향말뚝 재하시험을 통한 현장타설말뚝의 연직지지력 설계정수 산정)

  • Jung, Gyung-Ja;Cho, Chong-Suck;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.574-584
    • /
    • 2006
  • Bi-directional loading test data are available to evaluate the design parameters which reflect the characteristics of a construction method and the variations of ground at the site where drilled shafts are installed. The method to obtain the design parameters of a real bridge by hi-directional loading test was introduced. The plans of multi-level testing and installation of measuring instruments should be made according to the rough estimation of axial bearing capacity, the length of pile, and the construction method. While the relationship between end bearing resistance and displacement was obtained directly from the hi-directional loading test, the relationship between unit side resistance and displacement was calculated through the measuring values. 1% displacement of pile diameter was adopted as the criteria of failure for ultimate resistance. As the settlement of pile head at the total ultimate bearing capacity obtained from these method was less than 1.5 % of pile diameter, this method was conservative to use in the field.

  • PDF

Numerical Analysis of Thermal Effect on Axial Load and Pile Settlements in PHC Energy Piles (PHC 에너지파일의 열응력에 따른 축하중-침하 수치해석)

  • Lee, Dae-Soo;Min, Hye-Sun;Lim, Hyun-Sung;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.5
    • /
    • pp.5-17
    • /
    • 2013
  • This study investigates the effect of thermal stress on axial load and pile settlement of PHC energy piles. A series of numerical analyses were performed by controlling major influencing parameters such as pile arrangement, pile spacing, end-bearing condition, soil condition and pile cap stiffness. It is found that the characteristics of pile-load transfer are significantly affected by seasonal operation mode (i.e., cooling and heating) throughout the year. Also, the axial load under thermal loading increases with increasing the pile spacing. The settlement of the pile in sand is larger than that in clay because of the thermal stress generated. It is also found that thermal stress highly influences on the end-bearing pile, corner pile and rigidity of pile cap.