• Title/Summary/Keyword: embedded vision

Search Result 176, Processing Time 0.04 seconds

Image Objects Detection Method for the Embedded System (임베디드 시스템을 위한 영상객체의 검출방법)

  • Kim, Yun-Il;Rho, Seung-Ryong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.420-425
    • /
    • 2009
  • In this paper, image detection and recognition algorithms are studied with respect to embedded carrier system. There are many suggested techniques to detect and recognize objects. But they have the propensity to need much calculation for high hit rate. Advanced and modified method needs to study for embedded systems that low power consumption and real time response are requested. The proposed methods were implemented using Intel(R) Open Source Computer Vision Library provided by Intel Corporation. And they run and tested on embedded system using a ARM920T processor by cross-compiling. They showed 1.6sec response time and 95% hit rate and supported the automated moving carrier system smoothly.

An auxiliary mechanism for vision obstruction using DeepLearning (딥러닝을 이용한 시각장애인 보조도구)

  • Kim, Youngjun;Yun, Jonggeun;Hur, Jaehyuk;Shin, Jaeho;Kang, Woochul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.853-856
    • /
    • 2017
  • 우리나라에 장애인 인구의 10% 정도인 약 25만 명의 사람들이 살아가고 있다[3]. 그러한 분들을 위한 여러 복지와 편의시설이 만들어지고 있지만 아직 도로를 안전하게 다니기에는 미흡한 부분이 많다. 시각장애인들이 좀 더 안전하게 생활을 할 수 있도록 하는 보조 장치를 제안한다. 사용자가 필요한 순간의 모습을 촬영한 뒤 딥 러닝으로 축적된 학습데이터를 이용하여 그 장면을 분석한다. 그 결과를 하나의 문장으로 표현하여 이어폰을 통해 사용자에게 서비스를 제공한다. 지원된 음성 서비스를 통해 시각장애인들이 걸어가는 길에 어떠한 장애물이 있는지 알려주어 위험한 상황에 놓이지 않고 안전하게 길을 걸어 다닐 수 있도록 보조해준다.

Accurate Human Localization for Automatic Labelling of Human from Fisheye Images

  • Than, Van Pha;Nguyen, Thanh Binh;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.5
    • /
    • pp.769-781
    • /
    • 2017
  • Deep learning networks like Convolutional Neural Networks (CNNs) show successful performances in many computer vision applications such as image classification, object detection, and so on. For implementation of deep learning networks in embedded system with limited processing power and memory, deep learning network may need to be simplified. However, simplified deep learning network cannot learn every possible scene. One realistic strategy for embedded deep learning network is to construct a simplified deep learning network model optimized for the scene images of the installation place. Then, automatic training will be necessitated for commercialization. In this paper, as an intermediate step toward automatic training under fisheye camera environments, we study more precise human localization in fisheye images, and propose an accurate human localization method, Automatic Ground-Truth Labelling Method (AGTLM). AGTLM first localizes candidate human object bounding boxes by utilizing GoogLeNet-LSTM approach, and after reassurance process by GoogLeNet-based CNN network, finally refines them more correctly and precisely(tightly) by applying saliency object detection technique. The performance improvement of the proposed human localization method, AGTLM with respect to accuracy and tightness is shown through several experiments.

Development of Stand-Alone Vision Processing Module Based on Linux OS in ARM CPU (ARM CUP를 이용한 리눅스기반 독립형 Vision 처리 모듈 개발)

  • Lee, Seok;Moon, Seung-Bin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04a
    • /
    • pp.657-660
    • /
    • 2002
  • 현재 Embedded system 에서 많은 기업체들이 리눅스를 채용하고 있고, 이러한 임베디드 리눅스는 실시간 운영체제가 필요한 로봇제어기에서부터 PDA, set-top box등 여러 분야에 걸쳐 응용되고 있다. 본 논문에서는 StrongARM SA-1110 CPU을 이용하여 만들어진 임베디드 시스템에 리눅스를 사용하여 독립형 비전모듈을 개발한 내용을 기술한다. 또한, WinCE 를 사용하여 개발된 비전모듈과의 성능을 비교하여 리눅스를 이용한 독립형 비전모듈을 평가하고, 머신비전 분야에서의 리눅스 응용 가능성을 제시하였다.

  • PDF

Development of an Intelligent Unmanned Vehicle Control System (지능형 무인자동차 제어시스템 개발)

  • Kim, Yoon-Gu;Lee, Ki-Dong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.3
    • /
    • pp.126-135
    • /
    • 2008
  • The development of an unmanned vehicle basically requires the robust and reliable performance of major functions which include global localization, lane detection, obstacle avoidance, path planning, etc. The implementation of major functional subsystems are possible by integrating and fusing data acquired from various sensory systems such as GPS, vision, ultrasonic sensor, encoder, and electric compass. This paper focuses on implementing the functional subsystems, which are designed and developed by a graphical programming tool, NI LabVIEW, and also verifying the autonomous navigation and remote control of the unmanned vehicle.

  • PDF

The Design of a Network based Visual Agent Platform for Tangible Space (실감 만남을 위한 네트워크 기반 Visual Agent Platform 설계)

  • Kim, Hyun-Ki;Choy, Ick;You, Bum-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.258-260
    • /
    • 2006
  • In this paper, we designed a embedded system that will perform a primary role of Tangible Space implementation. This hardware includes function of image capture through camera interface, image process and sending off image information by LAN (local area network) or WLAN(wireless local area network). We define this hardware as a network based Visual Agent Platform for Tangible Space

  • PDF

A light-weight Gender/Age Estimation model based on Multi-taking Deep Learning for an Embedded System (임베디드 시스템을 위한 멀티태스킹 딥러닝 학습 기반 경량화 성별/연령별 추정)

  • Bao, Huy-Tran Quoc;Chung, Sun-Tae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.483-486
    • /
    • 2020
  • Age estimation and gender classification for human is a classic problem in computer vision. Almost research focus just only one task and the models are too heavy to run on low-cost system. In our research, we aim to apply multitasking learning to perform both task on a lightweight model which can achieve good precision on embedded system in the real time.

Development of Robust Embedded Measurement System by Using PXI Bus (PXI 버스를 이용한 강인한 범용계측시스템 개발)

  • 유제택
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.171-177
    • /
    • 2004
  • Many instrumentations have been used to acquire the performance data of military systems fer many years. But they could not satisfy environmental specifications(vibration, shock, temperature) and processing speed to apply for the performance test of military systems because of having developed as common vehicles/fixed installation equipments. Thus a new rugged embedded measurement system is required to process large data in high processing speed(Maximum sample rate:1.25Mhz/ch) with rugged environmental specifications. We have developed embedded measurement systems by using PXI(PCI extension for Instrumentation)bus interface composed of a stand alone controller and versatile data acquisition boards(analog, digital, vision, temperature and small signal conditioner) on PC-based environment to solve these problems. Operation programs have been developed using Lab_View and the performances have been validated experimentally.

Implementation of Computer Vision and Deep Learning-Based Golfer Pose-Estimation System And Coaching System (컴퓨터 비전과 딥러닝 라이브러리 기반 골퍼 자세 판단 및 코칭 시스템)

  • Byeon, Woo-Jin;Shim, Young-Seon;You, Hye-Seung;Kang, Seokhun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.1040-1043
    • /
    • 2020
  • 본 논문에서는 골퍼의 자세 교정을 위해 레슨 프로 혹은 코치가 수행하는 교육을 담당하는 시스템을 구현한다. 이 시스템은 골프를 배우고자 하는 골퍼와 자세를 교정하고자 하는 골퍼를 대상으로 한다. 프로 골퍼의 스윙자세 영상을 촬영하고 딥러닝 라이브러리로 관절, 클럽의 위치를 디지털로 식별하여 표준 자세 정보를 입수한다. 그리고 사용자의 영상을 촬영하여 표준자세 정보와 비교 후 올바른 자세를 도표 및 시각적으로 제공 할 수 있도록 한다. 사람이 하는 방식 보다 객관적이고, 센서방식 보다 경제적인 시스템으로 골프교육산업의 활성화에 기여 할 수 있을 것이다.

Smart Vision Sensor for Satellite Video Surveillance Sensor Network (위성 영상감시 센서망을 위한 스마트 비젼 센서)

  • Kim, Won-Ho;Im, Jae-Yoo
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.70-74
    • /
    • 2015
  • In this paper, satellite communication based video surveillance system that consisted of ultra-small aperture terminals with small-size smart vision sensor is proposed. The events such as forest fire, smoke, intruder movement are detected automatically in field and false alarms are minimized by using intelligent and high-reliable video analysis algorithms. The smart vision sensor is necessary to achieve high-confidence, high hardware endurance, seamless communication and easy maintenance requirements. To satisfy these requirements, real-time digital signal processor, camera module and satellite transceiver are integrated as a smart vision sensor-based ultra-small aperture terminal. Also, high-performance video analysis and image coding algorithms are embedded. The video analysis functions and performances were verified and confirmed practicality through computer simulation and vision sensor prototype test.