• Title/Summary/Keyword: electronic neurons

Search Result 45, Processing Time 0.028 seconds

Volatile Memristor-Based Artificial Spiking Neurons for Bioinspired Computing

  • Yoon, Soon Joo;Lee, Yoon Kyeung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.311-321
    • /
    • 2022
  • The report reviews recent research efforts in demonstrating a computing system whose operation principle mimics the dynamics of biological neurons. The temporal variation of the membrane potential of neurons is one of the key features that contribute to the information processing in the brain. We first summarize the neuron models that explain the experimentally observed change in the membrane potential. The function of ion channels is briefly introduced to understand such change from the molecular viewpoint. Dedicated circuits that can simulate the neuronal dynamics have been developed to reproduce the charging and discharging dynamics of neurons depending on the input ionic current from presynaptic neurons. Key elements include volatile memristors that can undergo volatile resistance switching depending on the voltage bias. This behavior called the threshold switching has been utilized to reproduce the spikes observed in the biological neurons. Various types of threshold switch have been applied in a different configuration in the hardware demonstration of neurons. Recent studies revealed that the memristor-based circuits could provide energy and space efficient options for the demonstration of neurons using the innate physical properties of materials compared to the options demonstrated with the conventional complementary metal-oxide-semiconductors (CMOS).

신경경로의 정보처리에 대한 전기적 특성 연구

  • 박상희;이명호
    • 전기의세계
    • /
    • v.28 no.8
    • /
    • pp.66-71
    • /
    • 1979
  • This paper describes electrical analysis of the information processing of the nervous system. A general-purpose electrical neuronal model for simulating the electrical activity in a single nerve cell and in small groups of nerve cell has constructed. This model consists of two basic electronic modules to represent respectively a "cell body" and an "axon (with synapses)", together with various related appurtenances. The primary advantages of this method are; holistic view, actual physical representation of various electrical activities in a single nerve cell, display of the activity of all nerve cells flexibility with respect to network parameters. Moreover, this model can effectively help push forward our general ability to explore and conceptualize the electrical activity of interconnected networks of nerve cell behaving in concert. Also, this electronic module technique is the best of various means for this task of realistic representation of aggregates of neurons.gregates of neurons.

  • PDF

Chip design and application of gas classification function using MLP classification method (MLP분류법을 적용한 가스분류기능의 칩 설계 및 응용)

  • 장으뜸;서용수;정완영
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.309-312
    • /
    • 2001
  • A primitive gas classification system which can classify limited species of gas was designed and simulated. The 'electronic nose' consists of an array of 4 metal oxide gas sensors with different selectivity patterns, signal collecting unit and a signal pattern recognition and decision Part in PLD(programmable logic device) chip. Sensor array consists of four commercial, tin oxide based, semiconductor type gas sensors. BP(back propagation) neutral networks with MLP(Multilayer Perceptron) structure was designed and implemented on CPLD of fifty thousand gate level chip by VHDL language for processing the input signals from 4 gas sensors and qualification of gases in air. The network contained four input units, one hidden layer with 4 neurons and output with 4 regular neurons. The 'electronic nose' system was successfully classified 4 kinds of industrial gases in computer simulation.

  • PDF

Robust Real-time Pose Estimation to Dynamic Environments for Modeling Mirror Neuron System (거울 신경 체계 모델링을 위한 동적 환경에 강인한 실시간 자세추정)

  • Jun-Ho Choi;Seung-Min Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.583-588
    • /
    • 2024
  • With the emergence of Brain-Computer Interface (BCI) technology, analyzing mirror neurons has become more feasible. However, evaluating the accuracy of BCI systems that rely on human thoughts poses challenges due to their qualitative nature. To harness the potential of BCI, we propose a new approach to measure accuracy based on the characteristics of mirror neurons in the human brain that are influenced by speech speed, depending on the ultimate goal of movement. In Chapter 2 of this paper, we introduce mirror neurons and provide an explanation of human posture estimation for mirror neurons. In Chapter 3, we present a powerful pose estimation method suitable for real-time dynamic environments using the technique of human posture estimation. Furthermore, we propose a method to analyze the accuracy of BCI using this robotic environment.

Supervised Competitive Learning Neural Network with Flexible Output Layer

  • Cho, Seong-won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.675-679
    • /
    • 2001
  • In this paper, we present a new competitive learning algorithm called Dynamic Competitive Learning (DCL). DCL is a supervised learning method that dynamically generates output neurons and initializes automatically the weight vectors from training patterns. It introduces a new parameter called LOG (Limit of Grade) to decide whether an output neuron is created or not. If the class of at least one among the LOG number of nearest output neurons is the same as the class of the present training pattern, then DCL adjusts the weight vector associated with the output neuron to learn the pattern. If the classes of all the nearest output neurons are different from the class of the training pattern, a new output neuron is created and the given training pattern is used to initialize the weight vector of the created neuron. The proposed method is significantly different from the previous competitive learning algorithms in the point that the selected neuron for learning is not limited only to the winner and the output neurons are dynamically generated during the learning process. In addition, the proposed algorithm has a small number of parameters, which are easy to be determined and applied to real-world problems. Experimental results for pattern recognition of remote sensing data and handwritten numeral data indicate the superiority of DCL in comparison to the conventional competitive learning methods.

  • PDF

Genetically Optimized Hybrid Fuzzy Set-based Polynomial Neural Networks with Polynomial and Fuzzy Polynomial Neurons

  • Oh Sung-Kwun;Roh Seok-Beom;Park Keon-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.327-332
    • /
    • 2005
  • We investigatea new fuzzy-neural networks-Hybrid Fuzzy set based polynomial Neural Networks (HFSPNN). These networks consist of genetically optimized multi-layer with two kinds of heterogeneous neurons thatare fuzzy set based polynomial neurons (FSPNs) and polynomial neurons (PNs). We have developed a comprehensive design methodology to determine the optimal structure of networks dynamically. The augmented genetically optimized HFSPNN (namely gHFSPNN) results in a structurally optimized structure and comes with a higher level of flexibility in comparison to the one we encounter in the conventional HFPNN. The GA-based design procedure being applied at each layer of gHFSPNN leads to the selection leads to the selection of preferred nodes (FSPNs or PNs) available within the HFSPNN. In the sequel, the structural optimization is realized via GAs, whereas the ensuing detailed parametric optimization is carried out in the setting of a standard least square method-based learning. The performance of the gHFSPNN is quantified through experimentation where we use a number of modeling benchmarks synthetic and experimental data already experimented with in fuzzy or neurofuzzy modeling.

Random generator-controlled backpropagation neural network to predicting plasma process data

  • Kim, Sungmo;Kim, Sebum;Kim, Byungwhan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.599-602
    • /
    • 2003
  • A new technique is presented to construct predictive models of plasma etch processes. This was accomplished by combining a backpropagation neural network (BPNN) and a random generator (RC). The RG played a critical role to control neuron gradients in the hidden layer, The predictive model constructed in this way is referred to as a randomized BPNN (RG-BPNN). The proposed scheme was evaluated with a set of experimental plasma etch process data. The etch process was characterized by a 2$^3$ full factorial experiment. The etch responses modeled are 4, including aluminum (Al) etch rate, profile angle, Al selectivity, and do bias. Additional test data were prepared to evaluate model appropriateness. The performance of RC-BPNN was evaluated as a function of the number of hidden neurons and the range of gradient. for given range and hidden neurons, 100 sets of random neuron gradients were generated and among them one best set was selected for evaluation. Compared to the conventional BPNN, the proposed RC-BPNN demonstrated about 50% improvements in all comparisons. This illustrates that the RG-BPNN of multi-valued gradients is an effective way to considerably improve the predictive ability of current BPNN of single-valued gradient.

  • PDF

Controlling a lamprey-based robot with an electronic nervous system

  • Westphal, A.;Rulkov, N.F.;Ayers, J.;Brady, D.;Hunt, M.
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.39-52
    • /
    • 2011
  • We are developing a biomimetic robot based on the Sea Lamprey. The robot consists of a cylindrical electronics bay propelled by an undulatory body axis. Shape memory alloy (SMA) actuators generate propagating flexion waves in five undulatory segments of a polyurethane strip. The behavior of the robot is controlled by an electronic nervous system (ENS) composed of networks of discrete-time map-based neurons and synapses that execute on a digital signal processing chip. Motor neuron action potentials gate power transistors that apply current to the SMA actuators. The ENS consists of a set of segmental central pattern generators (CPGs), modulated by layered command and coordinating neuron networks, that integrate input from exteroceptive sensors including a compass, accelerometers, inclinometers and a short baseline sonar array (SBA). The CPGs instantiate the 3-element hemi-segmental network model established from physiological studies. Anterior and posterior propagating pathways between CPGs mediate intersegmental coordination to generate flexion waves for forward and backward swimming. The command network mediates layered exteroceptive reflexes for homing, primary orientation, and impediment compensation. The SBA allows homing on a sonar beacon by indicating deviations in azimuth and inclination. Inclinometers actuate a bending segment between the hull and undulator to allow climb and dive. Accelerometers can distinguish collisions from impediment to allow compensatory reflexes. Modulatory commands mediate speed control and turning. A SBA communications interface is being developed to allow supervised reactive autonomy.

Design of a Neural Chip for Classifying Iris Flowers based on CMOS Analog Neurons

  • Choi, Yoon-Jin;Lee, Eun-Min;Jeong, Hang-Geun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.284-288
    • /
    • 2019
  • A calibration-free analog neuron circuit is proposed as a viable alternative to the power hungry digital neuron in implementing a deep neural network. The conventional analog neuron requires calibrations because a voltage-mode link is used between the soma and the synapse, which results in significant uncertainty in terms of current mapping. In this work, a current-mode link is used to establish a robust link between the soma and the synapse against the variations in the process and interconnection impedances. The increased hardware owing to the adoption of the current-mode link is estimated to be manageable because the number of neurons in each layer of the neural network is typically bounded. To demonstrate the utility of the proposed analog neuron, a simple neural network with $4{\times}7{\times}3$ architecture has been designed for classifying iris flowers. The chip is now under fabrication in 0.35 mm CMOS technology. Thus, the proposed true current-mode analog neuron can be a practical option in realizing power-efficient neural networks for edge computing.

Neural Network Architecture Optimization and Application

  • Liu, Zhijun;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.214-217
    • /
    • 1999
  • In this paper, genetic algorithm (GA) is implemented to search for the optimal structures (i.e. the kind of neural networks, the number of inputs and hidden neurons) of neural networks which are used approximating a given nonlinear function. Two kinds of neural networks, i.e. the multilayer feedforward [1] and time delay neural networks (TDNN) [2] are involved in this paper. The synapse weights of each neural network in each generation are obtained by associated training algorithms. The simulation results of nonlinear function approximation are given out and some improvements in the future are outlined.

  • PDF