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Abstract - A new technique is presented to construct
predictive models of plasma etch processes. This was
accomplished by combining a backpropagation neural
network (BPNN) and a random generator (RG). The RG
played a critical role to control neuron gradients in the
hidden layer. The predictive model constructed in this
way is referred to as a randomized BPNN (RG-BPNN).
The proposed scheme was evaluated with a set of
experimental plasma etch process data, The etch process
was characterized by a 2° full factorial experiment. The
etch responses modeled are 4, including aluminum (Al)
etch rate, profile angle, Al selectivity, and dc bias.
Additional test data were prepared to evaluate model
appropriateness. The performance of RG-BPNN was
evaluated as a function of the number of hidden neurons
and the range of gradient. For given range and hidden
peurons, 100 sets of random neuron gradients were
generated and among them one best set was selected for
evaluation. Compared to the conventional BPNN, the
RG-BPNN 50%
improvements in all comparisons. This illustrates that the

proposed demonstrated  about
RG-BPNN of multi-valued gradients is an effective way to
considerably improve the predictive ability of current

BPNN of single-valued gradient.

1. Introduction

Plasma etching is a key means to fine patterning of
thin films in manufacturing integrated circuits. Predictive
elch models are highly demanded not only to empirically
characterize plasma processes, but to identify useful

trade-offs between process response variables for process

optimization. Once constructed, predictive models can be
effectively used to explore process parameter effects on
etching or deposition under various plasma conditions
without conducting additional experiments. Neural
networks have been promisingly used to build predictive
models of various plasma processes [1-3]. Among neural
networks, the backpropagation neural network (BPNN)
has been the most frequently applied compared to other
paradigms. This is mainly attributed to its high predictive
ability as demonstrated by the improved predictions over
statistical regression models [4-5]. In most applications,
predictive models are constructed by controlling the number
of hidden neurons. It has been reported that the gradient of
neuron activation function affects the BPNN predictive
ability considerably [1, 2, 3, 5]. The optimized gradient is
typically optimized by adjusting it within certain
experimental range. Meanwhile, all neurons have the same
optimized gradient. It is expected that by choosing multi-
valued gradients the predictive ability can be improved.
Despite this expectation, there have been little studies on this
concern.

In this study, a new empirical technique to overcome the
current limit stated earlier is presented. This is accomplished
by using a random generator (RG). The RG plays a role of
generating many sets of random neuron gradients. For
convenience, the RG-based BPNN is called RG-BPNN. The
performance of RG-BPNN is evaluated as a function of the
number of hidden neurons and the experimental range of
random gradients. The performance is also compared to
conventional BPNN. The data examined were collected from
the etching of silica thin film, and the etch responses modeled
are aluminum (Al) etch rate, profile angle, Al selectivity, and

dc bias. Additional test data were prepared to evaluate model
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appropriateness. The etching was conducted in an inductively
coupled (ICP) plasma etch system.

2. Experimental Details

The schematic diagram of the ICP etch system is depicted
in Fig. 1. Detailed procedures to fabricate test patterns are
explained in the previous work [3]. The etch process was
characterized by a 2* full factorial experiment [6] with one
center point. Resulting nine experiments are used to train the
BPNN. Additional six experiments were conducted to prepare
test data for model evaluation. The process parameters that
were varied in the design include the radio frequency (rf)
source power, bias power, and gas ratio. The total flow rate of
gases, CHF; and CF,, was set to 60 sccm and the flow rate of
CHF; was varied from 10 sccm to 50 scecm. Their
experimental ranges are shown in Table L

The gas flow rate ratio in Table I is defined as the flow rate
of CHF; divided by the flow rate of CF,. In consequence, a
total of 15 experiments were conducted. The etch responses
modeled include aluminum (Al) etch rate, selectivity, profile
angle of silica film, and DC bias. The etch rates and profile
angle were estimated by using a scanning electron
microscopy (SEM). The selectivity is defined as the ratio of
silica etch rate to Al one. The dc bias was measured by
reading the dc voltmeter embedded in the match network.
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Fig .1 Schematic of a plasma etch system

Table I: Experimental parameters and ranges

Parameter Range Units

Source Power 100-800 Watts

Bias Power 100-400 Watts
Gas Ratio 0.2-5.0
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3. Backpropagation neural network

The BPNN consists of three layers of neurons: input layer,
hidden layer, and output layer. The input layer receives
external information such as adjustable process parameters
contained in Table 1. The output layer transmits the data and
thus corresponds to the various process responses. In this
study, the number of neurons in the output layer was set to
unity since only etch responses were modeled individually.
The BPNN also incorporates “hidden” layers of neurons that
do not interact with the outside world, but assists in
performing nonlinear feature extraction on the data provided
by the input and output layers. Here, the number of the
hidden layer was set to unity. The activation level (or firing
strength) of a neuron in the hidden layer is determined by a
bipolar sigmoid function denoted as
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where in;; and out;y indicate the weighted input to the ith
neuron in the kth layer and output from that neuron,
respectively. The g, represents the gradient of the bipolar
sigmoid function and determines the activation level of
neuron. Meanwhile, the BPNN adopts a linear function in the
output layer, expressed as
out;, =in;, -g, (2)

where g; represents the gradient of the linear function. For a
given set of training factors, both gradients in (1) and (2) are
to be optimized to improve the prediction accuracy. The BP
algorithm by which the network is trained begins with a
random set of weights (i.e. connection strengths between
neurons). The Euclidean distance in the weight space the
network attempts to minimize is the accumulated error (E) of
all the input-output pairs, which is expressed as

E=3(-out)’ O
=

where q is the number of output neurons, d;is the desired
output of the jth neuron in the output layer, and out; is the
calculated output of that same neuron. In the BP algorithm,
this error is to be minimized via the gradient descent
optimization, in which the weights are adjusted in the



direction of decreasing the E in (3). A basic weight update
scheme, commonly known as the generalized delta rule, is
expressed as

W m+1) =W, (m)+n AW, ;, (m) “4)

where Wi is the connection strength between the jth

peuaron in the layer (k-1) and the ith neuron in the layer k
and AW, is the calculated change in the weight to

minimize the E in (3) and defined as

AW, =-—E &)
s awi,j,k

Other parameters m and 7 indicate the iteration number
called
respectively. The n was set to 0.01 in this study. By adjusting

and an adjustable parameter “learning rate,”
the weighted connections recursively using the rule (4) for all
the units in the network, the accumulated E for all training

vactors is minimized.

Table II: Prediction performance of BPNN as a function of
the number of hidden neurons and gradient.

Number of Hidden Neurons

Gradient

3 4 5 6
0.2 697.9 529.1 610.5 450.0 690.5
04 627.8 395.7 528.7 500.1 521.1
0.6 611.5 6949 5019 5356 5326
0.8 611.2 6814 5163 577.0 5975
1.0 613.5 718.0 5242 6073 598.0
1.2 6143 6413 529.1 6210 595.2
14 6159 635.0 5322 6269 5949
1.6 617.2 627.0 533.8 6293 596.0
1.8 617.5 617.1 5340 627.5 596.7
2.0 6174 6084 5333 6089 5983

4. Results

4.l. BPNN of single valued-neuron gradient

First, the performance of conventional BPNN is evaluated.
As stated earlier, the performance is investigated as a
function of neuron numbers and gradient. The number varied
from 2 to 6 by 1. The gradient varied within the range 0.2-2.0
with an increment of 0.2. It should be noted that given the
gradient all hidden neurons are equipped with the same one.
Also, another gradient (g)) was set to unity. The other training
factors were set to their default values, 0.10 training tolerance.

4 1.0 initial weight distribution. As an illustration, the Al
etch rate was modeled and results are shown in Table II. The
predictive accuracy was measured by the root-mean squared
error (RMSE). As contained in Table II, the best model is
obtained at 3 hidden neurons and 0.4 gradient. The
corresponding RMSE is 395.7 A/min. In this way, the other
etch responses were evaluated and their performances are
summarized in Table 111

Table III: Performance of optimized BPNN with optimized
gradient and hidden neurons

Etch Responses Hidden Neurons  Gradient = RMSE

Al Etch Rate (A/min) 3 0.4 395.7
Profile Angle (degree) 6 1.0 2.45
Selectivity 6 0.8 2.28
DC Bias (V) 5 0.4 59.3

Table IV: Prediction performance of BPNN as a function of
the number of hidden neurons and range of random

gradient.
Number of Hidden Neurons
Gradient
. 3 4 5 6
+0.2 131.7 1074 935 63.3 61.8
+04 1569 207.8 1200 1542 1203
106 1449 1473 1620 1206 1424
+08 131.8 1321 1290 1040 1412
+1.0 1318 77.1 164.7 1129 1508
+12 1315 1352 1646 1340 1168
+14 1315 131.8 1564 1557 1486
16 1321 53.7 1413 1279 1834
+18 1322 146.0 78.9 133.1 1974
+20 1315 612 122.0 170.1 139.5

4.2. BPNN of multi-valued neuron gradient

Using the RG, 100 predictive BPNN models were
generated for a given neuron number and random gradient.
Among them, only one model of the smallest RMSE was
selected. The corresponding RMSEs for the Al etch rate
models determined are contained in Table IV. As seen in
Table IV, one optimal model is obtained at 3 hidden neurons
and in the range [0, * 1.6]. The optimized gradients are
0.1432, 0.3336, and 0.8507. The corresponding RMSE is
A/min. Compared to conventional BPNN, the RG-BPNN
demonstrates a significant improvement of 86.4%. In the
same way, the other etch responses were evaluated and
results are contained in Table V. The improvements over the

conventional BPNN are contained in the last column of
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Table V. As seen in Table V, the improvements are more than
about 50% in all comparisons. This clearly indicates the
advantage of multi-valued gradients.

Table V: Performance of optimized BPNN with optimized

range of random gradient and hidden neurons
Etch Hidden Rangeof RMSE | Improvement

Responses  Neurons  Gradient (%)

Al Etch Rate 3 +1.6 537 86.4
( A/min)

Profile Angle 4 +04 1.15 53.0
(degree)

Selectivity 3 +0.2 1.02 55.2

DC Bias 4 +20 25.3 57.3

~)

5. Conclusions

In this study, we presented a means to optimize gradients
of BPNN hidden neurons. The RG played a role of generating
multiple sets of neuron gradients. The performance of
optimized etch models were compared to those obtained in
conventional way. More than 50% improvements were
demonstrated for all etch responses. A drastic improvement
of about 86% was achieved for the Al etch rate. Due to high
computational burden, the complexity of random initial
weight was not considered. This can empirically be taken into
account by generating multiple models for each of generated
models for a given range of random gradient. The
comparison results clearly indicate that the RG-controlled
neuron gradient is an effective way to considerably improve
the BPNN predictive ability.
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