DOI QR코드

DOI QR Code

Robust Real-time Pose Estimation to Dynamic Environments for Modeling Mirror Neuron System

거울 신경 체계 모델링을 위한 동적 환경에 강인한 실시간 자세추정

  • Received : 2024.04.25
  • Accepted : 2024.06.12
  • Published : 2024.06.30

Abstract

With the emergence of Brain-Computer Interface (BCI) technology, analyzing mirror neurons has become more feasible. However, evaluating the accuracy of BCI systems that rely on human thoughts poses challenges due to their qualitative nature. To harness the potential of BCI, we propose a new approach to measure accuracy based on the characteristics of mirror neurons in the human brain that are influenced by speech speed, depending on the ultimate goal of movement. In Chapter 2 of this paper, we introduce mirror neurons and provide an explanation of human posture estimation for mirror neurons. In Chapter 3, we present a powerful pose estimation method suitable for real-time dynamic environments using the technique of human posture estimation. Furthermore, we propose a method to analyze the accuracy of BCI using this robotic environment.

BCI(뇌-컴퓨터 인터페이스) 기술의 등장으로 거울 신경을 분석하는 것이 용이해졌다. 그러나 인간의 생각에 의존하는 BCI 시스템의 정확성을 평가하는 것은 그 질적 특성으로 인해 어려움을 겪는다. BCI의 잠재력을 활용하기 위해 우리는 움직임의 궁극적인 목표에 따라 발화 속도가 영향을 받는 인간의 거울 신경의 특성을 기반으로 정확도를 측정하는 새로운 접근법을 제안한다. 본 논문에 2장에서는 거울 신경을 소개한다. 또한, 거울 신경을 위한 인간 자세 추정에 대한 설명을 제시한다. 3장에서는 인간 자세 추정 기법을 활용하여 실시간 동적 환경에 적합한 강력한 포즈 추정 방법을 소개한다. 이어서 이러한 로봇 환경을 이용한 BCI의 정확성을 분석하는 방법을 제시한다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2022R1G1A1012554)

References

  1. G. Pellegrino, L. Fadiga, L. Fogassi, G. Rizzolatti, "Understanding motor events: a neurophysiological study," Exp Brain Res, vol. 91, 1992, pp. 176-180.  https://doi.org/10.1007/BF00230027
  2. V. Gallese, L. Fadiga, L. Fogassi, G. Rizzolatti, "Action recognition in the premotor cortex," Brain, vol. 119 no. 2, 1996, pp. 593-609.  https://doi.org/10.1093/brain/119.2.593
  3. G. Rizzolatti, M. A. Arbib, "Language within our grasp," Trends in Neurosciences, vol. 21, no. 5, 1998, pp. 188-194.  https://doi.org/10.1016/S0166-2236(98)01260-0
  4. D. Jang, "Recent Studies on Mirror Neurons: Focusing on Imitation and Empathy," Communications of the Korean Institute of Information Scientists and Engineers, vol. 30, no. 12, 2012, pp. 43-51. 
  5. H. Ko, J. Park, K. Lee, E. Lee, M. Oh, "The effect of action-observational physical training based on mirror neuron system on upper extremity function and activities of daily living in stroke patient," J of The Korea Institute of Electronic Communication Sciences, vol. 9, no. 1, 2013, pp. 123-130. https://doi.org/10.13067/JKIECS.2014.9.1.123 
  6. C. Nam, S. Kim, D. Krusienkki, A. Nijholt, Research and Development in Brain-Computer Interfacing Technology: A Comprehensive Technical Review). Final Report, Vienna, VA, USA: Korean-American Scientists and Engineers Association (KSEA), 2015. 
  7. Y. Jang, J. Han. "Analysis of EEG Generated from Concentration by Visual Stimulus Task," J of The Korea Institute of Electronic Communication Sciences, vol. 9, no.5, 2014, pp. 589-594.  https://doi.org/10.13067/JKIECS.201.9.5.589
  8. S. Lee, J. Kim, S. Park, K. Ko, K. Sim, "Development of Mirror Neuron System-based BCI System using Steady-State Visually Evoked Potentials," J. of the Korean Institute of Intelligent Systems, vol. 22 no. 1, 2012. pp. 62-68.  https://doi.org/10.5391/JKIIS.2012.22.1.62
  9. J. Kilner, K. Friston, C. Frith, "The mirror-neuron system: a Bayesian perspective," Neuroreport, vol. 18, no. 6, 2007, pp. 619-623.  https://doi.org/10.1097/WNR.0b013e3281139ed0
  10. N. Bigdely Shamlo, S. Makeig, "Mind-mirror: Eeg-guided image evolution. In Human-Computer Interaction," Human-Computer Interaction. Novel Interaction Methods and Techniques HCI 2009. Lecture Notes in Computer Science, vol 5611. Springer, Berlin, Heidelberg, 2009, pp. 569-578. 
  11. S. Thill, D. Caligiore, A. Borghi, T. Ziemke, G. Baldassarre,, "Theories and computational models of affordance and mirror systems: an integrative review," Neuroscience & Biobehavioral Reviews, vol. 37, no. 3, 2013, pp. 491-521.  https://doi.org/10.1016/j.neubiorev.2013.01.012
  12. J. Choi, Y. Lee, S. Park, "Human Pose Estimation based on humanoid robot for mirror neuron system imitation", Korea Association of Information Systems. Pukyong National University, Oct., 2022, pp. 391-397 
  13. L. Yan, L. Lai-Cun, L. Jing-Xuan, X. Meng, Y. Jeong. "Research on Human Posture Recognition System Based on The Object Detection Dataset," J of The Korea Institute of Electronic Communication Sciences, vol. 17 no.1, 2022, pp. 111-118. https://doi.org/10.13067/JKIECS.2022.17.1.111 
  14. C. Zheng, W. Wu, C. Chen, T. Yang, S. Zhu, J. Shen, M. Shah, "Deep learning-based human pose estimation: A survey," ACM Computing Surveys, vol. 56, no. 1, 2023, pp. 1-37. 
  15. Z. Cao, T. Simon, S. Wei, Y. Sheikh, "Realtime multi-person 2d pose estimation using part affinity fields," In Proceedings of the IEEE Conf. on computer vision and pattern recognition (CVPR), Honolulu Hawaii, 2017, pp. 7291-7299.