• 제목/요약/키워드: electrochemical sensor

검색결과 360건 처리시간 0.028초

이산화납/탄소 반죽 전극을 이용한 과당 농도 측정 스트립센서 (A Strip Sensor Based on PbO2/Carbon Paste Electrode to Determine Sweetener Contents in Fruits)

  • 이재선;조주영;허민;임우진;이상은;남학현;차근식;신재호
    • 전기화학회지
    • /
    • 제17권2호
    • /
    • pp.130-137
    • /
    • 2014
  • 본 연구에서는 스크린 프린팅 방법을 이용하여 이산화납($PbO_2$)/탄소 반죽 전극을 제작하고, 이를 전기화학 방법의 과일 천연당(포도당, 자당, 과당) 측정용 센서로 이용하였다. 이산화납/탄소 반죽전극은 탄수화물과 같은 유기화합물의 전기화학적 산화촉매 신호를 측정함으로써 효소를 사용하지 않고도 당의 측정이 가능하다. 또한 측정 시 심각한 방해작용을 하는 아스코르브산(ascorbic acid)은 Nafion 막을 전극표면에 도입함으로써 효과적으로 감소시켰다. 최적화된 Nafion/이산화납/탄소 반죽 전극은 사람이 느끼는 상대당도(과당>자당>포도당)와 유사하게 각 당에 대한 감응신호를 나타내었다.

수열합성에 의한 3차원 구조의 NiCo2O4 제조 및 글루코스 센서로서의 응용 (3-Dimensional NiCo2O4 nanostructure prepared by hydrothermal process and its application for glucose sensor)

  • 장규봉;민성욱
    • 한국결정성장학회지
    • /
    • 제31권2호
    • /
    • pp.78-83
    • /
    • 2021
  • 본 연구에서는 수열반응법을 이용하여 3차원 구조를 갖는 NiCo2O4 입자를 합성했다. 수열합성에서 반응조건 [Ni]/[Co] 비율, 반응시간과 열처리온도를 달리하여 입자의 조성과 형상을 조절했다. 최적의 조건을 결정하고자 XRD, SEM을 통해 입자를 분석하였으며, [Ni]/[Co] 1:2 비율, 반응시간 12시간, 열처리 400℃ 4시간 조건에서 3차원 구조를 갖는 단일상의 NiCo2O4가 합성하였다. 합성된 NiCo2O4 나노구조체의 글루코스 센서 특성평가 결과, 글루코스에 대해 높은 민감도와 탁월한 선택성을 나타냈다. 본 연구를 통해 합성한 NiCo2O4 나노구조체는 향후 비효소 기반 전기화학적 글루코스 센서로 널리 응용될 수 있을 것으로 기대된다.

전류검출형 NO2가스 센서의 제작과 특성평가 (Fabrication and Characteristics of Amperometric NO2 Gas Sensors)

  • 김귀열
    • 한국전기전자재료학회논문지
    • /
    • 제20권9호
    • /
    • pp.821-827
    • /
    • 2007
  • The nitrogen oxides, NO and $NO_2$, abbreviated usually as NOx, emitted from combustion facilities such as power plants and automobiles are the typical air-pollutants causing acid rain and photochemical smog. In order to solve the NOx-related pollution problems effectively, we need efficient techniques to monitor NOx in the combustion exhausts and in environments. Development of solid-state electrochemical devices for detecting NOx is demonstrated based on various combination of solid electrolytes and auxiliary sensing materials. The object of this research is to develop various sensor performance for solid state amperometric sensor, and to test gas sensor performance manufactured. So we try to present a guidance for developing amperometric gas sensor. We concentrated on development of manufacturing process and performance test. Amperometric Nitrogen dioxide sensor was fabricated using NASICON and an $NaNO_2$ layer deposited on the counter electrode. The current response was almost linear with Nitrogen dioxide concentration in the range 1-350 ppb at $150^{\circ}C$.

탄소나노튜브 스마트 복합소재를 이용한 인공뉴런 개발 연구 (Developing Artificial Neurons Using Carbon Nanotubes Smart Composites)

  • 강인필;백운경;최경락;정주영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.136-141
    • /
    • 2007
  • This paper introduces an artificial neuron which is a nano composite continuous sensor. The continuous nano sensor is fabricated as a thin and narrow polymer film sensor that is made of carbon nanotubes composites with a PMMA or a silicone matrix. The sensor can be embedded onto a structure like a neuron in a human body and it can detect deteriorations of the structure. The electrochemical impedance and dynamic strain response of the neuron change due to deterioration of the structure where the sensor is located. A network of the long nano sensor can form a structural neural system to provide large area coverage and an assurance of the operational health of a structure without the need for actuators and complex wave propagation analyses that are used with other methods. The artificial neuron is expected to effectively detect damage in large complex structures including composite helicopter blades and composite aircraft and vehicles.

  • PDF

Disposable Solid-State pH Sensor Using Nanoporous Platinum and Copolyelectrolytic Junction

  • Noh, Jong-Min;Park, Se-Jin;Kim, Hee-Chan;Chung, Taek-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3128-3132
    • /
    • 2010
  • A disposable solid-state pH sensor was realized by utilizing two nanoporous Pt (npPt) electrodes and a copolyelectrolytic junction. One nanoporous Pt electrode was to measure the pH as an indicating electrode (pH-IE) and the other assembled with copolyelectrolytic junction was to maintain constant open circuit potential ($E_{oc}$) as a solid-state reference electrode (SSRE). The copolyelectrolytic junction was composed of cationic and anionic polymers immobilized by photo-polymerization of N,N'-methylenebisacrylamide, making buffered electrolytic environment on the SSRE. It was expected to make. The nanoporous Pt surrounded by a constant pH excellently worked as a solid state reference electrode so as to stabilize the system within 30 s and retain the electrochemical environment regardless of unknown sample solutions. Combination between the SSRE and the pH-IE commonly based on nanoporous Pt yielded a complete solid-state pH sensor that requires no internal filling solution. The solid state pH sensing chip is simple and easy to fabricate so that it could be practically used for disposable purposes. Moreover, the solid-state pH sensor successfully functions in calibration-free mode in a variety of buffers and surfactant samples.

콘크리트내로 침투하는 염소이온 반응형 부식센서의 응답특성에 미치는 센서 세선 수의 영향에 관한 실험적 연구 (An Experimental Study on the Effect of Sensor Line Number on the Reactivity Characteristic of Corrosion Sensor Reactive with Chloride Ion to Immigrate into Concrete)

  • 이현석;이한승
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권3호
    • /
    • pp.143-152
    • /
    • 2014
  • 본 연구에서는 콘크리트내로 침투하는 염소이온을 모니터링하기 위하여, 스크린프리트 기법으로 염소이온 반응형 부식센서를 개발하고, 센서의 세선 수가 부식반응도 및 민감도에 미치는 영향을 실험을 통하여 정량적으로 분석하였다. 개발된 부식센서를 이용하여 염소이온량에 따라 부식 반응도을 확인하였으며, 센서의 파괴정도에 따른 저항변화에서는 단선형 센서보다 다선형 센서에서 큰 저항 변화를 나타내었다. 또한, 부식센서는 NaCl 수용액의 농도가 높은 만큼 센서의 저항변화가 크고, 콘크리트 내에서 센서 종류에 따른 부식저항은 단선형보다 다선형에서 민감도가 높게 나타났으며, 센서의 매설깊이가 클수록 저항변화 사이클 (cycle)은 증가하였다. 이상의 결과로, 본 연구에서 개발된 부식센서는 염분에 대한 부식반응과 민감도, 저항의 변화를 감지할 수 있었으며, 특히 7세선이 우수한 결과를 나타내어, 염분의 침투정도를 모니터링 하는데 가장 적합하다고 판단된다.

Electrochemical determination of chloramphenicol using a glassy carbon electrode modified with dendrite-like Fe3O4 nanoparticles

  • Giribabu, Krishnan;Jang, Sung-Chan;Haldorai, Yuvaraj;Rethinasabapathy, Muruganantham;Oh, Seo Yeong;Rengaraj, Arunkumar;Han, Young-Kyu;Cho, Wan-Seob;Roh, Changhyun;Huh, Yun Suk
    • Carbon letters
    • /
    • 제23권
    • /
    • pp.38-47
    • /
    • 2017
  • In this study, magnetite ($Fe_3O_4$) nanoparticles were electrochemically synthesized in an aqueous electrolyte at a given potential of -1.3 V for 180 s. Scanning electron microscopy revealed that dendrite-like $Fe_3O_4$ nanoparticles with a mean size of < 80 nm were electrodeposited on a glassy carbon electrode (GCE). The $Fe_3O_4/GCE$ was utilized for sensing chloramphenicol (CAP) by cyclic voltammetry and square wave voltammetry. A reduction peak of CAP at the $Fe_3O_4/GCE$ was observed at 0.62 V, whereas the uncoated GCE exhibited a very small response compared to that of the $Fe_3O_4/GCE$. The electrocatalytic ability of $Fe_3O_4$ was mainly attributed to the formation of Fe(VI) during the anodic scan, and its reduction to Fe(III) on the cathodic scan facilitated the sensing of CAP. The effects of pH and scan rate were measured to determine the optimum conditions at which the $Fe_3O_4/GCE$ exhibited the highest sensitivity with a lower detection limit. The reduction current for CAP was proportional to its concentration under optimized conditions in a range of $0.09-47{\mu}M$ with a correlation coefficient of 0.9919 and a limit of detection of $0.09{\mu}M$ (S/N=3). Moreover, the fabricated sensor exhibited anti-interference ability towards 4-nitrophenol, thiamphenicol, and 4-nitrobenzamide. The developed electrochemical sensor is a cost effective, reliable, and straightforward approach for the electrochemical determination of CAP in real time applications.

$RuO_2{\cdot}xH_2O$ 박막의 가스채색 현상을 이용한 수소검지 광센서 (Optical Hydrogen Sensor Based on Gasochromic $RuO_2{\cdot}xH_2O$ Thin Film)

  • 정현식;조현철;김경문
    • 한국수소및신에너지학회논문집
    • /
    • 제16권1호
    • /
    • pp.9-16
    • /
    • 2005
  • We studied the electrochromic properties of hydrated amorphous ruthenium oxide ($RuO_2{\cdot}xH_2O$) thin films using in-situ Raman spectroscopy during electrochemical charging/discharging cycles. We have found that the principal effect of hydrogen insertion into $RuO_2{\cdot}xH_2O$ is reduction of $Ru^{4+}\;to\;Ru^{3+}$, and not formation of new bonds involving hydrogen. We compared the changes in the Raman spectrum of a gasochromic $Pd/RuO_2{\cdot}xH_2O$ film as it is exposed to hydrogen gas with that of electrochemical hydrogen insertion. We tested the changes in the optical transmission of the $Pd/RuO_2{\cdot}xH_2O$ film when exposed to hydrogen gas.

Fabrication of Electrochemical Sensor with Tunable Electrode Distance

  • Yi, Yu-Heon;Park, Je-Kyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제5권1호
    • /
    • pp.30-37
    • /
    • 2005
  • We present an air bridge type electrode system with tunable electrode distance for detecting electroactive biomolecules. It is known that the narrower gap between electrode fingers, the higher sensitivity in IDA (interdigitated array) electrode. In previous researches on IDA electrode, narrower patterning required much precise and expensive equipment as the gap goes down to nanometer scale. In this paper, an improved method is suggested to replace nano gap pattering with downsizing electrode distance and showed that the patterning can be replaced by thickness control using metal deposition methods, such as electroplating or metal sputtering. The air bridge type electrode was completed by the following procedures: gold patterning for lower electrode, copper electroplating, gold deposition for upper electrode, photoresist patterning for gold film support, and copper etching for space formation. The thickness of copper electroplating is the distance between upper and lower electrodes. Because the growth rate of electroplating is $0.5{\mu}m\;min^{-1}$, the distance is tunable up to hundreds of nanometers. Completed electrodes on the same wafer had $5{\mu}m$ electrode distance. The gaps between fingers are 10, 20, 30, and $40{\mu}m$ and the widths of fingers are 10, 20, 30, 40, and $50{\mu}m$. The air bridge type electrode system showed better sensitivity than planar electrode.

전착법으로 제작한 ZnO 다층박막 제작과 특성 분석 (Characteristics of ZnO Multi-Layer Film Fabricated by Electrodeposition Method)

  • 이행자;박경희;김종민;장상목
    • 한국전기전자재료학회논문지
    • /
    • 제30권11호
    • /
    • pp.705-709
    • /
    • 2017
  • Effective surface area and morphology of a sensitive thin film are important factors for its applications in sensor systems for the analysis of physical properties. In this study, we investigated the morphologies, electrochemical properties, and applicability of zinc oxide multilayer thin films fabricated by electrodeposition and annealing. The microstructure and electrochemical properties of the zinc oxide films were dependent on temperature and applied voltage. The best characteristics were obtained at an applied voltage of -1.4 V and a temperature of $50^{\circ}C$. The morphologies also changed upon annealing. The results suggest that the zinc oxide films fabricated by electrodeposition and annealing can be applied as various sensor materials.