DOI QR코드

DOI QR Code

Disposable Solid-State pH Sensor Using Nanoporous Platinum and Copolyelectrolytic Junction

  • Noh, Jong-Min (Interdisciplinary Program, Biomedical Engineering Major, Graduate School, Seoul National University) ;
  • Park, Se-Jin (Nomadien Corporation) ;
  • Kim, Hee-Chan (Institute of Medical & Biological Engineering, Medical Research Center and Department of Biomedical Engineering, College of Medicine, Seoul National University) ;
  • Chung, Taek-Dong (Department of Chemistry, Seoul National University)
  • Received : 2010.08.30
  • Accepted : 2010.09.13
  • Published : 2010.11.20

Abstract

A disposable solid-state pH sensor was realized by utilizing two nanoporous Pt (npPt) electrodes and a copolyelectrolytic junction. One nanoporous Pt electrode was to measure the pH as an indicating electrode (pH-IE) and the other assembled with copolyelectrolytic junction was to maintain constant open circuit potential ($E_{oc}$) as a solid-state reference electrode (SSRE). The copolyelectrolytic junction was composed of cationic and anionic polymers immobilized by photo-polymerization of N,N'-methylenebisacrylamide, making buffered electrolytic environment on the SSRE. It was expected to make. The nanoporous Pt surrounded by a constant pH excellently worked as a solid state reference electrode so as to stabilize the system within 30 s and retain the electrochemical environment regardless of unknown sample solutions. Combination between the SSRE and the pH-IE commonly based on nanoporous Pt yielded a complete solid-state pH sensor that requires no internal filling solution. The solid state pH sensing chip is simple and easy to fabricate so that it could be practically used for disposable purposes. Moreover, the solid-state pH sensor successfully functions in calibration-free mode in a variety of buffers and surfactant samples.

Keywords

References

  1. Shin, J. H.; Lee, H. J.; Kim, C. Y.; Oh, B. K.; Rho, K. R.; Nam, H.; Cha, G. S. Anal. Chem. 1996, 68, 3166. https://doi.org/10.1021/ac9619140
  2. Baur, J. E.; Spaine, T. W. J. Electroanal. Chem. 1998, 443, 208. https://doi.org/10.1016/S0022-0728(97)00532-9
  3. Marzouk, S. A. M. Anal. Chem. 2003, 75, 1258. https://doi.org/10.1021/ac0261404
  4. Susan, C.; Richard, P. B. Anal. Chem. 2010, 82, 878. https://doi.org/10.1021/ac9020374
  5. Park, S.; Boo, H.; Kim, Y.; Han, J.-H.; Kim, H. C.; Chung, T. D. Anal. Chem. 2005, 77, 7695. https://doi.org/10.1021/ac050968j
  6. Ha, J.; Martin, S. M.; Jeon, Y.; Yoon, I. J.; Brown, R. B.; Nam, H.; Cha, G. S. Anal. Chim. Acta 2005, 549, 59. https://doi.org/10.1016/j.aca.2005.06.011
  7. Lee, H. J.; Hong, U. S.; Lee, D. K.; Shin, J. H.; Nam, H.; Cha, G. S. Anal. Chem. 1998, 70, 3377. https://doi.org/10.1021/ac980265k
  8. Kwon, N.-H.; Lee, K.-S.; Won, M.-S.; Shim, Y.-B. Analyst 2007, 132, 906. https://doi.org/10.1039/b706905g
  9. Vonau, W.; Enseleit, U.; Gerlach, F.; Herrmann, S. Electrochimica Acta 2004, 49, 3745. https://doi.org/10.1016/j.electacta.2004.02.048
  10. Nolan, M. A.; Tan, S. H.; Kounaves, S. P. Anal. Chem. 1997, 69, 1244. https://doi.org/10.1021/ac961020f
  11. Guth, U.; Gerlach, F.; Decker, M.; Oelbner, W.; Vonau, W. J. Solid State Electrochem. 2009, 13, 27. https://doi.org/10.1007/s10008-008-0574-7
  12. Suzuki, H.; Hiratsuka, A.; Sakurai, T.; Karube, I. Sens. Actuators B 1998, 46, 104. https://doi.org/10.1016/S0925-4005(98)00043-4
  13. Han, J. H.; Park, S.; Boo, H.; Kim, H. C.; Nho, J.; Chung, T. D. Electroanalysis 2007, 19, 786. https://doi.org/10.1002/elan.200603772
  14. Park, S.; Lee, S. Y.; Boo, H.; Kim, H.-M.; Kim, K.-B.; Kim, H. C.; Song, Y. J.; Chung, T. D. Chem. Mater. 2007, 19, 3373. https://doi.org/10.1021/cm0710756
  15. Chun, H.; Chung, T. D.; Kim, H. C. Anal. Chem. 2005, 77, 2490. https://doi.org/10.1021/ac048535o
  16. Kim, K. B.; Han, J. H.; Kim, H. C.; Chung, T. D. Appl. Phys. Lett. 2010, 96, 143506. https://doi.org/10.1063/1.3389492
  17. Han, J. H.; Kim, K. B.; Kim, H. C.; Chung, T. D. Angew. Chem. Int. Ed. 2009, 48, 3830. https://doi.org/10.1002/anie.200900045

Cited by

  1. Instrument-Free Control of the Standard Potential of Potentiometric Solid-Contact Ion-Selective Electrodes by Short-Circuiting with a Conventional Reference Electrode vol.86, pp.21, 2014, https://doi.org/10.1021/ac501464s