DOI QR코드

DOI QR Code

A Strip Sensor Based on PbO2/Carbon Paste Electrode to Determine Sweetener Contents in Fruits

이산화납/탄소 반죽 전극을 이용한 과당 농도 측정 스트립센서

  • Lee, Jae Seon (Department of Chemistry, Kwangwoon University) ;
  • Cho, Joo Young (Department of Chemistry, Kwangwoon University) ;
  • Heo, Min (Department of Chemistry, Kwangwoon University) ;
  • Lim, Woo-Jin (Department of Plant and Environmental Science, Hankyong National University) ;
  • Lee, Sang Eun (Department of Plant and Environmental Science, Hankyong National University) ;
  • Nam, Hakhyun (Department of Chemistry, Kwangwoon University) ;
  • Cha, Geun Sig (Department of Chemistry, Kwangwoon University) ;
  • Shin, Jae Ho (Department of Chemistry, Kwangwoon University)
  • 이재선 (광운대학교 자연과학대학 화학과) ;
  • 조주영 (광운대학교 자연과학대학 화학과) ;
  • 허민 (광운대학교 자연과학대학 화학과) ;
  • 임우진 (한경대학교 농생명과학대학 식물생명환경과학과) ;
  • 이상은 (한경대학교 농생명과학대학 식물생명환경과학과) ;
  • 남학현 (광운대학교 자연과학대학 화학과) ;
  • 차근식 (광운대학교 자연과학대학 화학과) ;
  • 신재호 (광운대학교 자연과학대학 화학과)
  • Received : 2014.05.08
  • Accepted : 2014.05.20
  • Published : 2014.05.31

Abstract

A strip sensor based on $PbO_2$/carbon paste electrode was prepared by a screen-printing method, and employed to electrochemically determine the concentration of fruit sweeteners(i.e. glucose, sucrose, and fructose). The $PbO_2$/carbon paste electrode could monitor electrocatalytic oxidation of organic compounds such as carbohydrates, and measure the levels of natural sweeteners without enzyme. Severe interference from ascorbic acid was effectively reduced by modifying the electrode surface with a Nafion membrane. The response level of the Nafion/$PbO_2$/carbon paste electrode increased in the order of fructose, sucrose, and glucose, which corresponds to the order of sweetness perceived by humans.

본 연구에서는 스크린 프린팅 방법을 이용하여 이산화납($PbO_2$)/탄소 반죽 전극을 제작하고, 이를 전기화학 방법의 과일 천연당(포도당, 자당, 과당) 측정용 센서로 이용하였다. 이산화납/탄소 반죽전극은 탄수화물과 같은 유기화합물의 전기화학적 산화촉매 신호를 측정함으로써 효소를 사용하지 않고도 당의 측정이 가능하다. 또한 측정 시 심각한 방해작용을 하는 아스코르브산(ascorbic acid)은 Nafion 막을 전극표면에 도입함으로써 효과적으로 감소시켰다. 최적화된 Nafion/이산화납/탄소 반죽 전극은 사람이 느끼는 상대당도(과당>자당>포도당)와 유사하게 각 당에 대한 감응신호를 나타내었다.

Keywords

References

  1. M. C. Martin-Villa, C. Vidal-Valverde, M.V. Dabrio, and E. Rojas-Hidalgo, 'Chromatographic measurement of the carbohydrate content of some commonly used soft drinks' Am. J. Clin. Nutr., 34, 1432 (1981).
  2. F. Chinnici, U. Spinabelli, C. Riponi, and A. Amati, 'Optimization of the determination of organic acids and sugars in fruit juices by ion-exclusion liquid chromatography' J. Food Comp. Anal., 18, 121 (2005). https://doi.org/10.1016/j.jfca.2004.01.005
  3. J. F. Muir, R. Rose, O. Rosella, K. Liels, J. S. Barrett, S. J. Shepherd, and P. R. Gibson, 'Measurement of shortchain carbohydrates in common Australian vegetables and fruits by high-performance liquid chromatography (HPLC)' J. Agric. Food Chem., 57, 554 (2009). https://doi.org/10.1021/jf802700e
  4. C. Zhang and K. S. Suslick, 'A colorimetric sensor array for organics in water' J. Am. Chem. Soc., 127, 11548 (2005). https://doi.org/10.1021/ja052606z
  5. S. H. Lim, C. J. Musto, E. Park, W. Zhong, and K. S. Suslick, 'A colorimetric sensor array for detection and identification of sugars' Org. Lett., 10, 4405 (2008). https://doi.org/10.1021/ol801459k
  6. M. Luzzana, D. Agnellini, P. Cremonesi, and G. Caramenti, 'Enzymatic reactions for the determination of sugars in food samples using the differential pH technique' Analyst, 126, 2149 (2001). https://doi.org/10.1039/b106880f
  7. S. Miertus, J. Katlik, A. Pizzariello, M. Stred'ansky, J. Svitel, and J. Svorc, 'Amperometric biosensors based on solid binding matrices applied in food quality monitoring' Biosens. Bioelectron., 13, 911 (1998). https://doi.org/10.1016/S0956-5663(98)00063-3
  8. C. A. B. Garcia, G. de Oliveira Neto, L. T. Kubota, and L. A. Grandin, 'A new amperometric biosensor for fructose using a carbon paste electrode modified with silica gel coated with Meldola's Blue and fructose 5-dehydrogenase' J. Electroanal. Chem., 418, 147 (1996). https://doi.org/10.1016/S0022-0728(96)04775-4
  9. P. A. Paredes, J. Parellada, V. M. Fernandez, I. Katakis, and E. Dominguez, 'Amperometric mediated carbon paste biosensor based on D-fructose dehydrogenase for the determination of fructose in food analysis' Biosens. Bioelectron., 12, 1233 (1997). https://doi.org/10.1016/S0956-5663(97)00090-0
  10. C. Batchelor-McAuley, Y. Du. G. G. Wildgoose, and R. G. Compton, 'The use of copper(II) oxide nanorod bundles for the non-enzymatic voltammetric sensing of carbohydrates and hydrogen peroxide' Sens. Actuators B, 135, 230 (2008). https://doi.org/10.1016/j.snb.2008.08.006
  11. C. Batchelor-McAuley, G. G. Widgoose, R. G. Compton, L. Shao, and M. L. H. Green, 'Copper oxide nanoparticle impurities are responsible for the electroanalytical detection of glucose seen using multiwalled carbon nanotubes' Sens. Actuators B, 32, 356 (2008).
  12. K. B. Male, S. H. Rapovic, Y. Liu, D. Wang, and J. H. T. Luong, 'Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes' Anal. Chim. Acta, 516, 35 (2004). https://doi.org/10.1016/j.aca.2004.03.075
  13. C. A. B. Garcia, G. de Oliveira Neto, and L. T. Kubota, 'New fructose biosensors utilizing a polypyrrole film and d-fructose 5-dehydrogenase immobilized by different processes' Anal. Chim. Acta, 374, 201 (1998). https://doi.org/10.1016/S0003-2670(98)00259-1
  14. J. Chen, W. D. Zhang, and J. S. Ye, 'Nonenzymatic electrochemical glucose sensor based on $MnO_2$/MWNTs nanocomposite' Electrochem. Commun., 10, 1268 (2008). https://doi.org/10.1016/j.elecom.2008.06.022
  15. X. Kang, Z. Mai, X. Zou, P. Cai, and J. Mo, 'A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode' Anal. Biochem., 363, 143 (2007). https://doi.org/10.1016/j.ab.2007.01.003
  16. L. Q. Rong, C. Yang, Q. Y. Qian, and X. H. Xia, 'Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes' Talanta, 72, 819 (2007). https://doi.org/10.1016/j.talanta.2006.12.037
  17. J. Kong, S. Shi, L. Kong, X. Zhu, and J. Ni, 'Preparation and characterization of $PbO_2$ electrodes doped with different rare earth oxides' Electrochim. Acta, 53, 2048 (2007). https://doi.org/10.1016/j.electacta.2007.09.003
  18. W. Gorski, and R. T. Kennedy, 'Electrocatalyst for nonenzymatic oxidation of glucose in neutral saline solutions' J. Electroanal. Chem., 424, 43 (1997). https://doi.org/10.1016/S0022-0728(96)04931-5
  19. S. Ai, M. Gao, W. Zhang, Q. Wang, Y. Xie, and L. Jin, 'Preparation of Ce-$PbO_2$ modified electrode and its application in detection of anilines' Talanta, 62, 445 (2004). https://doi.org/10.1016/j.talanta.2003.08.019
  20. N. D. Popovic, J. A. Cox, and D. C. Johnson, 'Electrocatalytic function of Bi(V) sites in heavily-doped $PbO_2$-film electrodes applied for anodic detection of selected sulfur compounds' J. Electroanal. Chem., 455, 153 (1998). https://doi.org/10.1016/S0022-0728(98)00157-0
  21. N. D. Popovic, J. A. Cox, and D. C. Johnson, 'A mathematical model for anodic oxygen-transfer reactions at Bi(V)-doped $PbO_2$-film electrodes' J. Electroanal. Chem., 456, 203 (1998). https://doi.org/10.1016/S0022-0728(98)00219-8
  22. P. Westbroek and E. Temmerman, 'In line measurement of chemical oxygen demand by means of multipulse amperometry at a rotating Pt ring-Pt/$PbO_2$ disc electrode' Anal. Chim. Acta, 437, 95 (2001). https://doi.org/10.1016/S0003-2670(01)00927-8
  23. L. M. Hanover and J. S. White, 'Manufacturing, composition, and applications of fructose' Am. J. Clin. Nutr., 58, 724S (1993). https://doi.org/10.1093/ajcn/58.5.724S
  24. S. Ai, M. Gao, Y. Yang, J. Li, and L. Jin, 'Electrocatalytic sensor for the determination of chemical oxygen demand using a lead dioxide modified electrode' Electroanalysis, 16, 404 (2004). https://doi.org/10.1002/elan.200302839
  25. A. A. Franke, L. J. Custer, C. Arakaki, and S. P. Murphy, 'Vitamin C and flavonoid levels of fruits and vegetables consumed in Hawaii' J. Food Comp. Anal., 17, 1 (2004). https://doi.org/10.1016/S0889-1575(03)00066-8
  26. M. Hagg, S. Ylikoski, and J. Kumpulainen, 'Vitamin C content in fruits and berries consumed in finland', J. Food Comp. Anal., 8, 12 (1995). https://doi.org/10.1006/jfca.1995.1003
  27. S. S. Schiffman, E. A. Sattely-Miller, B. G. Graham, B. J. Booth, and K. M. Gibes, 'Synergism among ternary mixtures of fourteen sweeteners' Chem. Senses, 25, 131 (2000). https://doi.org/10.1093/chemse/25.2.131
  28. A. A. Velichenko and D. Devilloers, 'Electrodeposition of fluorine-doped lead dioxide' J. Fluorine Chem., 128, 269 (2007). https://doi.org/10.1016/j.jfluchem.2006.11.010
  29. H. Chung, H. Yang, W. Kim, and J. Park, 'Nickel oxidemodified composite electrode for electrochemical detection of polyhydroxyl compounds in liquid chromatographic analysis', Anal. Chim. Acta, 471, 195 (2002). https://doi.org/10.1016/S0003-2670(02)00927-3
  30. S. Buratti, B. Brunetti, and S. Mannino, 'Amperometric detection of carbohydrates and thiols by using a glassy carbon electrode coated with Co oxide/multi-wall carbon nanotubes catalytic system' Talanta, 76, 454 (2008). https://doi.org/10.1016/j.talanta.2008.03.031
  31. V. Dharuman and K. C. Pillai, '$RuO_2$ electrode surface effects in electrocatalytic oxidation of glucose' J. Solid State Electrochem., 10, 967 (2006). https://doi.org/10.1007/s10008-005-0033-7

Cited by

  1. A highly sensitive and simply operated protease sensor toward point-of-care testing vol.141, pp.8, 2016, https://doi.org/10.1039/C6AN00251J