• Title/Summary/Keyword: electrochemical methods

Search Result 568, Processing Time 0.03 seconds

A Study on Corrosion Resistance of CA2-Mixed Paste (CA2 혼입 페이스트의 부식저항성에 관한 연구)

  • Kim, Jae-Don;Jang, Il-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.289-297
    • /
    • 2022
  • Deterioration in durability of structures due to the steel corrosion is difficult to determine whether or not corrosion is initiated and how much propagated, and moreover, repair and maintenance are not easy to deal with. Therefore, preventive treatments can be the best option to avoid the deterioration. Various methods for preventing corrosion of steel, such as electrochemical treatments, anti-corrosion agents and steel surface coatings, are being developed, but economic and environmental aspects make it difficult to apply them to in-situ field. Thus, the purpose of this study was to improve corrosion resistance by using CA-based clinker that are relatively simple and expected to be economically profitable Existing CA-based clinkers had problems such as flash setting and low strength development during the initial hydration process, but in order to solve this problem, CA clinker with low initial reactivity were used as binder in this study. The cement paste used in the experiments was replaced with CA2 clinker for 0%, 10%, 20%, and 30% in OPC. And the mixture used in the chloride binding test for the extraction of water-soluble chloride was intermixed with Cl- 0.5%, 1%, 2%, and 3% by weight of binder content. To evaluate characteristic of hydration heat evolution, calorimetry analysis was performed and simultaneously chloride binding capacity and acid neutralization capacity were carried out. The identification of hydration products with curing ages was verified by X-ray diffraction analysis. The free chloride extraction test showed that the chlorine ion holding ability improved in order OC 10 > OC 30 > OC 20 > OC 0 and the pH drop resistance test showed that the resistance capability in pH 12 was OC 0 > OA 10 > OA 20 > OA 30. The XRD analyses showed that AFm phase, which can affect the ability to hold chlorine ions, tended to increase when CA2 was mixed, and that in pH12 the content of calcium hydroxide (Ca(OH)2), which indicates pH-low resistance, decreased as CA2 was mixed

Corrosion resistance assessment of nickel-titanium endodontic files with and without heat treatment

  • Tatiana Dias Costa;Elison da Fonseca e Silva;Paula Liparini Caetano ;Marcio Jose da Silva Campos ;Leandro Marques Resende ;Andre Guimaraes Machado;Antonio Marcio Resende do, Carmo
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.1
    • /
    • pp.6.1-6.10
    • /
    • 2021
  • Objectives: The aim of this study was to evaluate the corrosion resistance of heat-treated (Reciproc and WaveOne) and non-heat-treated (ProTaper and Mtwo) superelastic nickel-titanium endodontic files when immersed in a 5.25% sodium hypochlorite solution. Materials and Methods: Anodic polarization curves were obtained with potential sweeps that began at the open circuit potential or corrosion potential (Ecorr). The pitting potential (Epit) was identified on the anodic polarization curve as the potential at which a sudden increase in current was observed. The micromorphology of the 28 tested files was analyzed before and after the electrochemical assay using scanning electron microscope (SEM). The data were analyzed using 1-way analysis of variance with the post hoc Bonferroni test (for Ecorr) and the Student t-test for independent samples (for Epit). Results: The mean Ecorr values were 0.506 V for ProTaper, 0.348 V for Mtwo, 0.542 V for Reciproc, and 0.321 V for WaveOne files. Only WaveOne and Protaper files exhibited pitting corrosion, with Epit values of 0.879 V and 0.904 V, respectively. On the SEM images of the ProTaper and WaveOne files, cavities suggestive of pitting corrosion were detected. Conclusions: Signs of corrosion were observed in both heat-treated and non-heat-treated files. Of the evaluated files, WaveOne (a heat-treated file) and ProTaper (a non-heat-treated file) exhibited the lowest corrosion resistance.

A Brief Review on Membrane-Based Hydrogen Isotope Separation (막 기반 수소동위원소 분리 연구에 대한 총설)

  • Soon Hyeong So;Dae Woo Kim
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.114-123
    • /
    • 2024
  • Hydrogen isotopes can be categorized into light hydrogen, heavy hydrogen, and tritium based on the number of neutrons, each of which is used in specific fields. Specifically, deuterium is of interest in the electronics industry, nuclear energy industry, analytical technology industry, pharmaceutical industry, and telecommunications industry. Conventional methods such as cold distillation, thermal cycling absorption processes, Girdler sulfide processes, and water electrolysis have their own advantages and disadvantages, leading to the need for alternative technologies with high separation and energy efficiency. In this context, membrane-based hydrogen isotope separation is one of the promising solutions to reduce energy consumption. In this review, we will present the state-of-the-art in hydrogen isotope separation using membranes and their operating principles. The technology for separating hydrogen isotopes using membranes is just beginning to be conceptualized, and many challenges remain to be overcome. However, if achieved, the economic benefits are expected to be significant. We will discuss future research directions for this purpose.

Effect of Calcination Temperature on Ionic Conductivity of All-solid State Battery Electrolytes (하소 온도가 전고체 전지 전해질의 이온전도도에 미치는 영향)

  • Yu Taek Hong;Ji Min Im;Ki Sang Baek;Chan Gyu Kim;Seung Wook Baek;Jung Hyun Kim
    • New & Renewable Energy
    • /
    • v.20 no.2
    • /
    • pp.71-81
    • /
    • 2024
  • In this study, the electrochemical properties of garnet-structured all-solid-state battery electrolytes (Li6.4La3Zr1.4Ta0.6O12, hereafter LLZTO) were assessed by altering the calcination temperature, while maintaining a consistent sintering duration. Among the various heat treatment conditions employed for sample fabrication, the '700_1100' condition, denoting a calcination temperature of 700℃ and a sintering temperature of 1100℃, resulted in the most exceptional ionic conductivity of 4.89 × 10-4 S/cm and a relative density of 88.72% for the LLZTO material. This is attributed to the low calcination temperature of 700℃, leading to reduced grain size and enhanced cohesiveness, thus resulting in a higher sintered density. In addition, a microstructure similar to the typical sintering characteristics observed in Spark Plasma Sintering (SPS) methods was identified in the SEM analysis results under the '700_1100' condition. Consequently, the '700_1100' heat treatment condition was deemed to optimal choice for enhancing ionic conductivity.

Evaluation of the Corrosion Property on the Welded Zone of Cast Steel Piston Crown with Types of Electrode (용접재료 별 주강 피스톤 크라운 용접부위의 부식 특성에 대한 평가)

  • Moon, Kyung-Man;Kim, Yun-Hae;Lee, Myeong-Hoon;Baek, Tae-Sil;Kim, Jin-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.356-362
    • /
    • 2014
  • Wear and corrosion of the engine parts surrounded with combustion chamber is more serious compared to the other parts of the engine because temperature of the exhaust gas in a combustion chamber is getting higher and higher with increasing of using the heavy oil of low quality. Therefore, an optimum repair weldment as well as an available choice of the base metal for these parts are very important to prolong their lifetime in a economical point of view. It reported that there was an experimental result for repair weldment on the forged steel which would be generally used with piston crown material, however, it is considered that there is no study for the repair weldment on the cast steel of piston crown material. In this study, four types of electrodes such as 1.25Cr-0.5Mo, 0.5Mo Inconel 625 and 718 were welded with SMAW and GTAW methods on the cast steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected zone and base metal were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% $H_2SO_4$ solution. In the cases of Inconel 625, 718, the weld metals and base metals exhibited the best and worst corrosion resistance respectively, however, 1.25Cr-0.5Mo and 0.5Mo indicated that corrosion resistance of the base metal was better than the weld metal. And the weld metal welded with electrodes of Inconel 625 revealed the best corrosion resistance among the electrodes, and Inconel 718 followed the Inconel 625. Hardness relatively also indicated higher value in the weld metal compared to heat affected zone and base metal. In particular, Inconel 718 indicated the highest value of hardness compared to other electrodes in the heat affected zone.

Determination of individual sugars in different varieties of persian grape using Near Infrared spectroscopy

  • Kargosha, Kazem;Azad, Jila;Lary, Abas Motamed
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1527-1527
    • /
    • 2001
  • Glucose, fructose and sucrose being the main sugars that can be found in natural fruit juice. Many instrumental methods, such as GC, LC, electrochemical or spectrometric methods provide information about both the total content of sugars and the specific concentration of each carbohydrate[1]. The simplicity of sample handling and measurement in the near IR(NIR) wavelength region, which allows the use of long pathlength, optical glass cells and optical fibers, makes NIR a good alternative for sugar determination [2]. In the present study, six varieties of persian grapes were harvested at intervals through august to october and analysed for sugars by NIR. The results were processed by principal component regression (PCR) and partial least squares (PLS) analysis. Sample juice was prepared by squeezing through gauze from crashed grape. This solution was treated by zinc ferrocyanide prior to analysis in order to eliminate colored compounds and all optically active nonsugar substances. For glucose and fructose the most characteristic wavelengths were 1456nm corresponding to the first harmonic O-H stretching and the second at 2062nm corresponding to O-H stretching and deformation; secondary characteristic combination bands were also seen at 2265 nm (O-H and C-C stretching) and at 2240 nm (C-H and C-C stretching). However these spectra were taken over a wavelength range from 1100-2500nm at room temperature of 25-$30^{\circ}C$. To test the accuracy of the described procedure, samples of six varieties of grape were analysed by the proposed NIR and a standard method[2]. Good agreement were found between these two sets of the results. To perform the recovery studies , samples of grape juices previously analysed by the proposed method, were spiked with known amounts of each individual sugars and then analysed again. Relative standard deviations varied from 1.4 to 1.8% for six independent measurements of individual and total sugar concentration. In the analysis of real and synthetic samples, precise and accurate results were obtained , providing accuracy errors lower than 1.9% in all cases. Average recoveries of ${97}{\pm}{4%}$ for total sugar and between ${95}{\pm}{5%}$ and ${99}{\pm}{2%}$ for sing1e sugars demonstrate the applicability of the methodology developed to the direct analysis of grape Juice.

  • PDF

Corrosion Characteristics of Fe-Si, Ni-Ti and Ni Alloy in Sulfuric Acid Environments (황산 환경에서 Fe-Si, Ni-Ti계 및 Ni 합금의 내부식성 특성)

  • Kwon, Hyuk-Chul;Kim, Dong-Jin;Kim, Hong-Pyo;Park, Ji-Yeon;Hong, Seong-Deok
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Methods of producing hydrogen include steam reforming, electrochemical decomposition of water, and the SI process. Among these methods, the Sulfur iodine process is one of the most promising processes for hydrogen production. The thermochemical sulfur-iodine (SI) process uses heat from a high-temperature-gas nuclear reactor to produce $H_2$ gas; this process is known for its production of clean energy as it does not emit $CO_2$ from water. But the SI-process takes place in an extremely corrosive environment for the materials. To endure SI environments, the materials for the SI environment will have to have strong corrosion resistance. This work studies the corrosion resistances of the Fe-Si, Ni-Ti and Ni Alloys, which are tested in SI-process environments. Among the SI-process environments, the conditions of boiling sulfuric acid and decomposed sulfuric acid are selected in this study. Before testing in boiling sulfuric acid environments, the specimens of Fe-4.5Si, Fe-6Si, Ni-4.5Si, Ni-Ti-Si-Nb and Ni-Ti-Si-Nb-B are previously given heat treatment at $1000^{\circ}C$ for 48 hrs. The reason for this heat treatment is that those specimens have a passive film on the surface. The specimens are immersed for 3~14 days in 98wt% boiling sulfuric acid. Corrosion rates are measured by using the weight change after immersion. The corrosion rates of the Fe-6Si and Ni-Ti-Si-Nb-B are found to decrease as the time passes. The corrosion rates of Fe-6si and Ni-Ti-Si-Nb-B are measured at 0.056 mm/yr and 0.16 mm/yr, respectively. Hastelloy-X, Alloy 617, Alloy 800H and Haynes 230 are tested in the decomposed sulfuric acid for one day. Alloy 800H was found to show the best corrosion resistance among the materials. The corrosion rate of Alloy 800H is measured at -0.35 mm/yr. In these results, the corrosion resistance of materials depends on the stability of the oxide film formed on the surface. After testing in boiling sulfuric acid and in decomposed sulfuric acid environments, the surfaces and compositions of specimens are analyzed by SEM and EDX.

INTERGRANULAR CORROSION-RESISTANT STAINLESS STEEL BY GRAIN BOUNDARY ENGINEERING

  • Hiroyuki Kokawa;Masayuki Shimada;Wang, Zhan-Jie;Yutaka S. Sato
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.250-254
    • /
    • 2002
  • Intergranular corrosion of austenitic stainless steels is a conventional and momentous problem during welding and high temperature use. One of the major reasons for such intergranular corrosion is so-called sensitization, i.e., chromium depletion due to chromium carbide precipitation at grain boundaries. Conventional methods for preventing sensitization of austenitic stainless steels include reduction of carbon content in the material, stabilization of carbon atoms as non-chromium carbides by the addition of titanium, niobium or zirconium, local solution-heat-treatment by laser beam, etc. These methods, however, are not without drawbacks. Recent grain boundary structure studies have demonstrated that grain boundary phenomena strongly depend on the crystallographic nature and atomic structure of the grain boundary, and that grain boundaries with coincidence site lattices are immune to intergranular corrosion. The concept of "grain boundary design and control", which involves a desirable grain boundary character distribution, has been developed as grain boundary engineering. The feasibility of grain boundary engineering has been demonstrated mainly by thermomechanical treatments. In the present study, a thermomechanical treatment was tried to improve the resistance to the sensitization by grain boundary engineering. A type 304 austenitic stainless steel was pre-strained and heat-treated, and then sensitized, varying the parameters (pre-strain, temperature, time, etc.) during the thermomechanical treatment. The grain boundary character distribution was examined by orientation imaging microscopy. The intergranular corrosion resistance was evaluated by electrochemical potentiokinetic reactivation and ferric sulfate-sulfuric acid tests. The sensitivity to intergranular corrosion was reduced by the thermomechanical treatment and indicated a minimum at a small roll-reduction. The frequency of coincidence-site-lattice boundaries indicated a maximum at a small strain. The ferric sulfate-sulfuric acid test showed much smaller corrosion rate in the thermomechanically-treated specimen than in the base material. An excellent intergranular corrosion resistance was obtained by a small strain annealing at a relatively low temperature for long time. The optimum parameters created a uniform distribution of a high frequency of coincidence site lattice boundaries in the specimen where corrosive random boundaries were isolated. The results suggest that the thermomechanical treatment can introduce low energy segments in the grain boundary network by annealing twins and can arrest the percolation of intergranular corrosion from the surface.

  • PDF

Artificial Control of ZnO Nanorods via Manipulation of ZnO Nanoparticle Seeds (산화아연 나노핵의 조작을 통한 산화아연 나노로드의 제어)

  • Shin, Kyung-Sik;Lee, Sam-Dong;Kim, Sang-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.399-399
    • /
    • 2008
  • Synthesis and characterization of ZnO structure such as nanowires, nanorods, nanotube, nanowall, etc. have been studied to multifunctional application such as optical, nanoscale electronic and chemical devices because it has a room-temperature wide band gap of 3.37eV, large exiton binding energy(60meV) and various properties. Various synthesis methods including chemical vapor deposition (CVD), physical vapor deposition, electrochemical deposition, micro-emulsion, and hydrothermal approach have been reported to fabricate various kinds of ZnO nanostructures. But some of these synthesis methods are expensive and difficult of mass production. Wet chemical method has several advantage such as simple process, mass production, low temperature process, and low cost. In the present work, ZnO nanorods are deposited on ITO/glass substrate by simple wet chemical method. The process is perfomed by two steps. One-step is deposition of ZnO seeds and two-step is growth of ZnO nanorods on substrates. In order to form ZnO seeds on substrates, mixture solution of Zn acetate and Methanol was prepared.(one-step) Seed layers were deposited for control of morpholgy of ZnO seed layers by spin coating process because ZnO seeds is deposited uniformly by centrifugal force of spin coating. The seed-deposited samples were pre-annealed for 30min at $180^{\circ}C$ to enhance adhesion and crystallinnity of ZnO seed layer on substrate. Vertically well-aligned ZnO nanorods were grown by the "dipping-and-holding" process of the substrates into the mixture solution consisting of the mixture solution of DI water, Zinc nitrate and hexamethylenetetramine for 4 hours at $90^{\circ}C$.(two-step) It was found that density and morphology of ZnO nanorods were controlled by manipulation of ZnO seeds through rpm of spin coating. The morphology, crystallinity, optical properties of the grown ZnO nanostructures were carried out by field-emission scanning electron microscopy, high-resolution electron microscopy, photoluminescence, respectively. We are convinced that this method is complementing problems of main techniques of existing reports.

  • PDF

Assessment of Exposure to and Risk of Formaldehyde and Particulate Matter (PM10 and PM2.5) by Time Activity Applying Real-Time Indoor and Outdoor Monitoring (실내·외 실시간 모니터링을 활용한 폼알데하이드 및 미세먼지(PM10, PM2.5)의 거주시간별 노출 및 위해도 평가)

  • Yoon, Danki;Namgoung, Sunju;Kong, Hyekwan;Hong, Hyungjin;Lim, Huibeen;Park, Sihyun;Lee, Hyewon;Lee, Jungsub;Lee, Cheolmin
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.6
    • /
    • pp.646-657
    • /
    • 2019
  • Objectives: The purpose of this study was to suggest methods to investigate continuous monitoring of concentration levels and assess the exposure of individuals considering the actual time activity of residents for formaldehyde and particulate matter (PM10, PM2.5) in the indoor and outdoor air of a house, assess the health risks of children and adults based on the results of the exposure assessment, and provide basic data on studies for assessing exposure and health risks in Korea in the future. Methods: The concentration levels of formaldehyde and particulate matter were measured in a family home in Gyeonggi-do Province from April 25 to July 31, 2019, using electrochemical sensors (formaldehyde) and light scattering sensors (PM10, PM2.5). Risk assessment by the duration of exposure by time activity was performed by dividing between weekdays and weekends, and indoors and outdoors. Results: The greatest level of carcinogenic risk from inhaling formaldehyde was indoors during the weekdays for both children and adults. For children, the risk was at 7.5 per approximately 10,000 people, and for adults, the risk was at 4.1 per approximately 10,000 people. PM10 and PM2.5 also showed the greatest values indoors during the weekdays, with children at 1.7 people and 1.4 per approximately 100 people, respectively, and adults at 8.2 per approximately 1,000 and 1.8 per approximately 100 people, respectively. Conclusions: The risks of formaldehyde, PM10 and PM2.5 were shown to be high indoors. Therefore, consideration of exposure assesment for each indoor pollutant and management of indoor air quality is necessary.