DOI QR코드

DOI QR Code

Effect of Calcination Temperature on Ionic Conductivity of All-solid State Battery Electrolytes

하소 온도가 전고체 전지 전해질의 이온전도도에 미치는 영향

  • Yu Taek Hong (Department of Advanced materials Science and Engineering, Hanbat National University) ;
  • Ji Min Im (Department of Advanced materials Science and Engineering, Hanbat National University) ;
  • Ki Sang Baek (Department of Advanced materials Science and Engineering, Hanbat National University) ;
  • Chan Gyu Kim (Department of Advanced materials Science and Engineering, Hanbat National University) ;
  • Seung Wook Baek (Interdisciplinary Materials Measurement Institue, Korea Research Institute of Standards and Science (KRISS)) ;
  • Jung Hyun Kim (Department of Advanced materials Science and Engineering, Hanbat National University)
  • Received : 2024.02.15
  • Accepted : 2024.03.20
  • Published : 2024.06.25

Abstract

In this study, the electrochemical properties of garnet-structured all-solid-state battery electrolytes (Li6.4La3Zr1.4Ta0.6O12, hereafter LLZTO) were assessed by altering the calcination temperature, while maintaining a consistent sintering duration. Among the various heat treatment conditions employed for sample fabrication, the '700_1100' condition, denoting a calcination temperature of 700℃ and a sintering temperature of 1100℃, resulted in the most exceptional ionic conductivity of 4.89 × 10-4 S/cm and a relative density of 88.72% for the LLZTO material. This is attributed to the low calcination temperature of 700℃, leading to reduced grain size and enhanced cohesiveness, thus resulting in a higher sintered density. In addition, a microstructure similar to the typical sintering characteristics observed in Spark Plasma Sintering (SPS) methods was identified in the SEM analysis results under the '700_1100' condition. Consequently, the '700_1100' heat treatment condition was deemed to optimal choice for enhancing ionic conductivity.

Keywords

References

  1. Lee, J., and Kim, W.B., 2014, "Research trend of electrode materials for lithium rechargeable batteries", J. Powder Mater., 21(6), 473-479.
  2. Mezei, F., 2011, "Basics concepts", Neutrons in Soft Matter, John Wiley & Sons, New Jersey, 1-28.
  3. Kim, Y., Park, J., Hwang, Y., and Jung, C., 2022, "Review on effective skills to inhibit dendrite growth for stable lithium metal electrode", Journal of the Korean Electrochemical Society, 25(2), 51-68. https://doi.org/10.5229/JKES.2022.25.2.51
  4. Yun, S., Kim, Y., Moon, H., Im, H., and Kwon, P., 2019, "Study on utilizing electric vehicles for the variability of renewable energy", New. Renew. Energy, 15(2), 74-80. https://doi.org/10.7849/ksnre.2019.6.15.2.074
  5. Kang, J., and Jeong, S., 2013, "Effects of co-solvent on dendritic lithium growth reaction", Transactions of the Korean hydrogen and new energy society, 24(2), 172-178. https://doi.org/10.7316/KHNES.2013.24.2.172
  6. Jung, K.N., Shin, H.S., Park, M.S., and Lee, J.W., 2019, "Solid-State lithium batteries: bipolar design, fabrication, and electrochemistry", ChemElectroChem, 6(15), 3842-3859. https://doi.org/10.1002/celc.201900736
  7. Hayashi, A., Sakuda, A., and Tatsumisago, M., 2016, "Development of sulfide solid electrolytes and interface formation processes for bulk-type all-solid-state Li and Na batteries", Front. Energy Res., 4.
  8. Lacivita, V., Artrith, N., and Ceder, G., 2018, "Structural and compositional factors that control the Li-Ion conductivity in LiPON electrolytes", Chem. Mater., 30(20), 7077-7090. https://doi.org/10.1021/acs.chemmater.8b02812
  9. Stramare, S., Thangadurai, V., and Weppner, W., 2003, "Lithium lanthanum titanates: A review", Chem. Mater., 15(21), 3974-3990. https://doi.org/10.1021/cm0300516
  10. Zhao, Q., Stalin, S., Zhao, C.Z., and Archer, L.A., 2020, "Designing solid-state electrolytes for safe, energy-dense batteries", Nature Reviews Materials, 5(3), 229-252. https://doi.org/10.1038/s41578-019-0165-5
  11. Wolfenstine, J., Allen, J.L., Read, J., and Sakamoto, J., 2013, "Chemical stability of cubic Li7La3 Zr2O12 with molten lithium at elevated temperature", J. Mater. Sci., 48, 5846-5851. https://doi.org/10.1007/s10853-013-7380-z
  12. Murugan, R., Ramakumar, S., and Janani, N., 2011, "High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet", Electrochemistry Communications, 13(12), 1373-1375. https://doi.org/10.1016/j.elecom.2011.08.014
  13. Huang, J., Liang, F., Hou, M., Zhang, Y., Chen, K., and Xue, D., 2020, "Garnet-type solid-state electrolytes and interfaces in all-solid-state lithium batteries: progress and perspective", Appl. Mater. Today, 20, 100750.
  14. Li, J., Liu, Z., Ma, W., Dong, H., Zhang, K., and Wang, R., 2019, "Low-temperature synthesis of cubic phase Li7La3Zr2O12 via sol-gel and ball milling induced phase transition", Journal of Power Sources, 412, 189-196. https://doi.org/10.1016/j.jpowsour.2018.11.040
  15. Hughes, S.W., 2006, "Measuring liquid density using Archimedes' principle", Phys. Educ., 41(5), 445.
  16. Shin, R.H., Son, S.I., Lee, S.M., Han, Y.S., Kim, Y.D., and Ryu, S.S., 2016, "Effect of Li3BO3 additive on densification and ion conductivity of garnet-type Li7La3Zr2O12 solid electrolytes of all-solid-state lithium-ion batteries", J. Korean Ceram. Soc., 53(6), 712-718. https://doi.org/10.4191/kcers.2016.53.6.712
  17. Liu, K., Ma, J.T., and Wang, C.A., 2014, "Excess lithium salt functions more than compensating for lithium loss when synthesizing Li6.5La3Ta0.5Zr1.5O12 in alumina crucible", Journal of Power Sources, 260, 109-114. https://doi.org/10.1016/j.jpowsour.2014.02.065
  18. Gao, X., Ran, H., Zhou, Q., Sekine, T., Liu, J., Chen, Y., and Chen, P., 2022, "Formation of novel bimetal oxide In2V2O7 through a shock compression method", ACS omega, 7(31), 27602-27608. https://doi.org/10.1021/acsomega.2c03220
  19. Kim, J.S., Kwon, B.W., and Park, J.S., 2005, "Synthesis of nanocrystalline ceria powders for SOFC electrolyte", Proc. 17th Workshop and Fall Conference, 656-659.
  20. Kim, K.W., Yang, S.H., Kim, M.Y., Lee, M.S., Lim, J., Chang, D.R., and Kim, H.S., 2016, "Cubic phase behavior and lithium ion conductivity of Li7La3Zr2O12 prepared by co-precipitation synthesis for all-solid batteries", J. Ind. Eng. Chem., 36, 279-283. https://doi.org/10.1016/j.jiec.2016.02.016
  21. Yoon, S.A., Oh, N.R., Yoo, A.R., Lee, H.G., and Lee, H.C., 2017, "Preparation and characterization of ta-substituted Li7La3Zr2-xO12 garnet solid electrolyte by sol-gel processing", J. Korean Ceram. Soc., 54(4), 278-284. https://doi.org/10.4191/kcers.2017.54.4.02
  22. Park, J.I., Lee, J.S., and Choi, T.W., 1996, "Fine powder synthesis and its sintering characteristics of CaO-stabilized ZrO by coprecipitation method", J. Korean Ceram. Soc., 33(5), 563-571.
  23. Jung, S.H., and Choi, S.C., 2012, "Effects of particle size and oxygen contents on ZrB2 powder for densification", J. Korean Cryst. Growth Cryst. Technol., 22(5), 247-253. https://doi.org/10.6111/JKCGCT.2012.22.5.247
  24. Dong, Z., Xu, C., Wu, Y., Tang, W., Song, S., Yao, J., Huang, Z., Wen, Z., Lu, L., and Hu, N., 2019, "Dual substitution and spark plasma sintering to improve ionic conductivity of garnet Li7La3Zr2O12", Nanomaterials, 9(5), 721.