References
- Lee, J., and Kim, W.B., 2014, "Research trend of electrode materials for lithium rechargeable batteries", J. Powder Mater., 21(6), 473-479.
- Mezei, F., 2011, "Basics concepts", Neutrons in Soft Matter, John Wiley & Sons, New Jersey, 1-28.
- Kim, Y., Park, J., Hwang, Y., and Jung, C., 2022, "Review on effective skills to inhibit dendrite growth for stable lithium metal electrode", Journal of the Korean Electrochemical Society, 25(2), 51-68. https://doi.org/10.5229/JKES.2022.25.2.51
- Yun, S., Kim, Y., Moon, H., Im, H., and Kwon, P., 2019, "Study on utilizing electric vehicles for the variability of renewable energy", New. Renew. Energy, 15(2), 74-80. https://doi.org/10.7849/ksnre.2019.6.15.2.074
- Kang, J., and Jeong, S., 2013, "Effects of co-solvent on dendritic lithium growth reaction", Transactions of the Korean hydrogen and new energy society, 24(2), 172-178. https://doi.org/10.7316/KHNES.2013.24.2.172
- Jung, K.N., Shin, H.S., Park, M.S., and Lee, J.W., 2019, "Solid-State lithium batteries: bipolar design, fabrication, and electrochemistry", ChemElectroChem, 6(15), 3842-3859. https://doi.org/10.1002/celc.201900736
- Hayashi, A., Sakuda, A., and Tatsumisago, M., 2016, "Development of sulfide solid electrolytes and interface formation processes for bulk-type all-solid-state Li and Na batteries", Front. Energy Res., 4.
- Lacivita, V., Artrith, N., and Ceder, G., 2018, "Structural and compositional factors that control the Li-Ion conductivity in LiPON electrolytes", Chem. Mater., 30(20), 7077-7090. https://doi.org/10.1021/acs.chemmater.8b02812
- Stramare, S., Thangadurai, V., and Weppner, W., 2003, "Lithium lanthanum titanates: A review", Chem. Mater., 15(21), 3974-3990. https://doi.org/10.1021/cm0300516
- Zhao, Q., Stalin, S., Zhao, C.Z., and Archer, L.A., 2020, "Designing solid-state electrolytes for safe, energy-dense batteries", Nature Reviews Materials, 5(3), 229-252. https://doi.org/10.1038/s41578-019-0165-5
- Wolfenstine, J., Allen, J.L., Read, J., and Sakamoto, J., 2013, "Chemical stability of cubic Li7La3 Zr2O12 with molten lithium at elevated temperature", J. Mater. Sci., 48, 5846-5851. https://doi.org/10.1007/s10853-013-7380-z
- Murugan, R., Ramakumar, S., and Janani, N., 2011, "High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet", Electrochemistry Communications, 13(12), 1373-1375. https://doi.org/10.1016/j.elecom.2011.08.014
- Huang, J., Liang, F., Hou, M., Zhang, Y., Chen, K., and Xue, D., 2020, "Garnet-type solid-state electrolytes and interfaces in all-solid-state lithium batteries: progress and perspective", Appl. Mater. Today, 20, 100750.
- Li, J., Liu, Z., Ma, W., Dong, H., Zhang, K., and Wang, R., 2019, "Low-temperature synthesis of cubic phase Li7La3Zr2O12 via sol-gel and ball milling induced phase transition", Journal of Power Sources, 412, 189-196. https://doi.org/10.1016/j.jpowsour.2018.11.040
- Hughes, S.W., 2006, "Measuring liquid density using Archimedes' principle", Phys. Educ., 41(5), 445.
- Shin, R.H., Son, S.I., Lee, S.M., Han, Y.S., Kim, Y.D., and Ryu, S.S., 2016, "Effect of Li3BO3 additive on densification and ion conductivity of garnet-type Li7La3Zr2O12 solid electrolytes of all-solid-state lithium-ion batteries", J. Korean Ceram. Soc., 53(6), 712-718. https://doi.org/10.4191/kcers.2016.53.6.712
- Liu, K., Ma, J.T., and Wang, C.A., 2014, "Excess lithium salt functions more than compensating for lithium loss when synthesizing Li6.5La3Ta0.5Zr1.5O12 in alumina crucible", Journal of Power Sources, 260, 109-114. https://doi.org/10.1016/j.jpowsour.2014.02.065
- Gao, X., Ran, H., Zhou, Q., Sekine, T., Liu, J., Chen, Y., and Chen, P., 2022, "Formation of novel bimetal oxide In2V2O7 through a shock compression method", ACS omega, 7(31), 27602-27608. https://doi.org/10.1021/acsomega.2c03220
- Kim, J.S., Kwon, B.W., and Park, J.S., 2005, "Synthesis of nanocrystalline ceria powders for SOFC electrolyte", Proc. 17th Workshop and Fall Conference, 656-659.
- Kim, K.W., Yang, S.H., Kim, M.Y., Lee, M.S., Lim, J., Chang, D.R., and Kim, H.S., 2016, "Cubic phase behavior and lithium ion conductivity of Li7La3Zr2O12 prepared by co-precipitation synthesis for all-solid batteries", J. Ind. Eng. Chem., 36, 279-283. https://doi.org/10.1016/j.jiec.2016.02.016
- Yoon, S.A., Oh, N.R., Yoo, A.R., Lee, H.G., and Lee, H.C., 2017, "Preparation and characterization of ta-substituted Li7La3Zr2-xO12 garnet solid electrolyte by sol-gel processing", J. Korean Ceram. Soc., 54(4), 278-284. https://doi.org/10.4191/kcers.2017.54.4.02
- Park, J.I., Lee, J.S., and Choi, T.W., 1996, "Fine powder synthesis and its sintering characteristics of CaO-stabilized ZrO by coprecipitation method", J. Korean Ceram. Soc., 33(5), 563-571.
- Jung, S.H., and Choi, S.C., 2012, "Effects of particle size and oxygen contents on ZrB2 powder for densification", J. Korean Cryst. Growth Cryst. Technol., 22(5), 247-253. https://doi.org/10.6111/JKCGCT.2012.22.5.247
- Dong, Z., Xu, C., Wu, Y., Tang, W., Song, S., Yao, J., Huang, Z., Wen, Z., Lu, L., and Hu, N., 2019, "Dual substitution and spark plasma sintering to improve ionic conductivity of garnet Li7La3Zr2O12", Nanomaterials, 9(5), 721.