Acknowledgement
This work was supported by the Industrial Strategic Technology Development Program ("Development of deuterium oxide localization and deuterium benzene synthesis technology to improve OLED lifetime by 25%", "20022479") funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).
References
- W. R. Browne and J. G. Vos, "The effect of deuteriation on the emission lifetime of inorganic compounds", Coord. Chem. Rev., 219-221, 761-787 (2001). https://doi.org/10.1016/S0010-8545(01)00366-6
- J. Yao, S. C. Dong, B. S. T. Tam, and C. W. Tang, "Lifetime enhancement and degradation study of blue OLEDs using deuterated materials", ACS Appl. Mater. Interfaces., 15, 7255-7262 (2023). https://doi.org/10.1021/acsami.2c22882
- 박철호, 조성배 and 최동훈, "중수소 기반 전자소재 산업 연구 동향", 인포메이션 디스플레이 = Information Display, 21, 19-27 (2020). https://doi.org/10.1080/15980316.2019.1688694
- J. W. Lyding, K. Hess, and I. C. Kizilyalli, "Reduction of hot electron degradation in metal oxide semiconductor transistors by deuterium processing", Appl. Phys. Lett., 68, 2526-2528 (1996). https://doi.org/10.1063/1.116172
- X. Xiao, H. T. Sessions, and R. Rabun, "Advanced isotope separation technology for fusion fuel", Fusion. Sci. Techno., 78, 253-257 (2022). https://doi.org/10.1080/15361055.2021.1982331
- F. Li, C. Pei, and R. M. Koenigs, "Photocatalytic gem-difluoroolefination reactions by a formal C-C coupling/defluorination reaction with diazoacetates", Angew. Chem. Int. Ed., 61, e202111892 (2022).
- G. Zaccai, "How soft is a protein? A protein dynamics force constant measured by neutron scattering", Science, 288, 1604-1607 (2000). https://doi.org/10.1126/science.288.5471.1604
- J. Atzrodt, V. Derdau, W. J. Kerr, and M. Reid, "Deuterium- and tritium-labelled compounds: Applications in the life sciences", Angew. Chem. Int. Ed., 57, 1758-1784 (2018). https://doi.org/10.1002/anie.201704146
- J. Stone, "Reduction of OH absorption in optical fibers by OH → OD isotope exchange", Ind. Eng. Chem. Prod. Res. Dev., 25, 609-621 (1986). https://doi.org/10.1021/i300024a603
- F. Huang and C. Meng, "Method for the production of deuterium-depleted potable water", Ind. Eng. Chem. Res., 50, 378-381 (2011). https://doi.org/10.1021/ie101820f
- S. H. So and H. Oh, "A mini-review of the current progress and future challenges of zeolites for hydrogen isotopes separation through a quantum effect", Int. J. Hydrogen Energy, 50, 539-560 (2024). https://doi.org/10.1016/j.ijhydene.2023.08.241
- L. K. Heung, H. T. Sessions, and X. Xiao, "Apparatus and process for separating hydrogen isotopes", US Patent 8,470,073, June 25 (2013).
- G. Huang, D. Wang, L. Hu, J. Bao, Y. Song, X. Yan, R. Xiong, T. Tang, and W. Luo, "Thermal cycling absorption process: A simple, efficient and safe strategy for hydrogen isotope separation", Int. J. Hydrogen Energy, 57, 8-25 (2024). https://doi.org/10.1016/j.ijhydene.2023.12.283
- N. Zeng, C. Hu, C. Lv, A. Liu, L. Hu, Y. An, P. Li, M. Chen, X. Zhang, M. Wen, K. Chen, Y. Yao, J. Cai, and T. Tang, "Large-current density and high-durability proton exchange membrane water electrolysis for practical hydrogen isotope separation", Sep. Purif. Technol., 310, 123148 (2023).
- H. Iwahara, "Hydrogen pumps using proton-conducting ceramics and their applications", Solid State Ionics, 125, 271-278 (1999). https://doi.org/10.1016/S0167-2738(99)00185-X
- M. Lozada-Hidalgo, S. Zhang, S. Hu, A. Esfandiar, I. V. Grigorieva, and A. K. Geim, "Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping", Nature Communications, 8, 15215 (2017).
- H. Wang, W. Li, H. Liu, Z. Wang, X. Gao, X. Zhang, Y. Guo, M. Yan, S. Zhang, L. Sun, H. Liu, Z. Wang, and H. Peng, "Palladium-assisted transfer of graphene for efficient hydrogen isotope separation", ACS Appl. Nano Mater., 6, 12322-12329 (2023). https://doi.org/10.1021/acsanm.3c02000
- S. Bukola, Y. Liang, C. Korzeniewski, J. Harris, and S. Creager, "Selective proton/deuteron transport through Nafion|graphene|Nafion sandwich structures at high current density", J. Am. Chem. Soc., 140, 1743-1752 (2018). https://doi.org/10.1021/jacs.7b10853
- X. Zhang, H. Wang, T. Xiao, X. Chen, W. Li, Y. Xu, J. Lin, Z. Wang, H. Peng and S. Zhang, "Hydrogen isotope separation using graphene-based membranes in liquid water", Langmuir, 39, 4975-4983 (2023). https://doi.org/10.1021/acs.langmuir.2c03453
- K. Harada, R. Tanii, H. Matsushima, M. Ueda, K. Sato, and T. Haneda, "Effects of water transport on deuterium isotope separation during polymer electrolyte membrane water electrolysis", Int. J. Hydrogen Energy, 45, 31389-31395 (2020). https://doi.org/10.1016/j.ijhydene.2020.08.256
- X. Xue, M. Zhang, F. Wei, C. Liang, J. Liang, J. Li, W. Cheng, K. Deng, and W. Liu, "Gold as an efficient hydrogen isotope separation catalyst in proton exchange membrane water electrolysis", Int. J. Hydrogen Energy, 47, 26842-26849 (2022). https://doi.org/10.1016/j.ijhydene.2022.06.052
- J. Xu, R. Li, X. Yan, Q. Zhao, R. Zeng, J. Ba, Q. Pan, X. Xiang, and D. Meng, "Platinum single atom catalysts for hydrogen isotope separation during hydrogen evolution reaction", Nano Res., 15, 3952-3958 (2022). https://doi.org/10.1007/s12274-022-4075-2
- X. Xue, X. Chu, M. Zhang, F. Wei, C. Liang, J. Liang, J. Li, W. Cheng, K. Deng, and W. Liu, "High hydrogen isotope separation efficiency: Graphene or catalyst?", ACS Appl. Mater. Interfaces., 14, 32360-32368 (2022). https://doi.org/10.1021/acsami.2c06394
- A. Mohammadi, M. R. Daymond, and A. Docoslis, "Graphene oxide membranes for isotopic water mixture filtration: Preparation, physicochemical characterization, and performance assessment", ACS Appl. Mater. Interfaces., 12, 34736-34745 (2020). https://doi.org/10.1021/acsami.0c04122
- A. F. M. Ibrahim, F. Banihashemi, and Y. S. Lin, "Graphene oxide membranes with narrow inter-sheet galleries for enhanced hydrogen separation", Chem. Commun., 55, 3077-3080 (2019). https://doi.org/10.1039/C8CC10283J
- W. Choi, S. E. Choi, J. S. Seol, J. P. Kim, M. Kim, H. Ji, O. Kwon, H. Kim, K. C. Kim, and D. W. Kim, "Polyethylene oxide-intercalated nanoporous graphene membranes for ultrafast H2/CO2 separation: Role of graphene confinement effect on gas molecule binding", J. Membr. Sci., 660, (2022).
- J. H. Kang, T. Kim, J. Choi, J. Park, Y. S. Kim, M. S. Chang, H. Jung, K. T. Park, S. J. Yang, and C. R. Park, "Hidden second oxidation step of hummers method", Chem. Mater., 28, 756-764 (2016). https://doi.org/10.1021/acs.chemmater.5b03700
- J. H. Kim, Y. Choi, J. Kang, E. Choi, S. E. Choi, O. Kwon, and D. W. Kim, "Scalable fabrication of deoxygenated graphene oxide nanofiltration membrane by continuous slot-die coating", J. Membr. Sci., 612, 118454 (2020).
- J. Kang, Y. Ko, J. P. Kim, J. Y. Kim, J. Kim, O. Kwon, K. C. Kim, and D. W. Kim, "Microwave-assisted design of nanoporous graphene membrane for ultrafast and switchable organic solvent nanofiltration", Nat. Commun., 14, 901 (2023).
- Q. Hou, Y. Wu, S. Zhou, Y. Wei, J. Caro, and H. Wang, "Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation", Angew. Chem. Int. Ed., 58, 327-331 (2019). https://doi.org/10.1002/anie.201811638
- J. Kim, J. Kang, J. P. Kim, J. Y. Kim, J. H. Kim, O. Kwon, and D. W. Kim, "Scalable fabrication of nanoporous multilayer graphene oxide membrane for organic solvent nanofiltration", Carbon, 207, 162-171 (2023). https://doi.org/10.1016/j.carbon.2023.03.008
- J. Jang, Y. T. Nam, D. Kim, Y. J. Kim, D. W. Kim, and H. T. Jung, "Turbostratic nanoporous carbon sheet membrane for ultrafast and selective nanofiltration in viscous green solvents", J. Mater. Chem. A., 8, 8292-8299 (2020). https://doi.org/10.1039/D0TA00804D
- D. W. Kim, H. Kim, M. L. Jin, and C. J. Ellison, "Impermeable gas barrier coating by facilitated diffusion of ethylenediamine through graphene oxide liquid crystals", Carbon, 148, 28-35 (2019). https://doi.org/10.1016/j.carbon.2019.03.039
- K. M. Cho, Y. So, S. E. Choi, O. Kwon, H. Park, J. Chan Won, H. Kim, H. T. Jung, Y. H. Kim, and D. W. Kim, "Highly conductive polyimide nanocomposite prepared using a graphene oxide liquid crystal scaffold", Carbon, 169, 155-162 (2020). https://doi.org/10.1016/j.carbon.2020.07.051
- L. Zhang, T. Wulf, F. Baum, W. Schmidt, T. Heine, and M. Hirscher, "Chemical affinity of Ag-exchanged zeolites for efficient hydrogen isotope separation", Inorg. Chem., 61, 9413-9420 (2022). https://doi.org/10.1021/acs.inorgchem.2c00028
- R. Xiong, J. Chen, L. Zhang, P. Li, X. Yan, Y. Song, W. Luo, T. Tang, G. Sang, and M. Hirscher, "Hydrogen isotopes separation in Ag(I) exchanged ZSM-5 zeolite through strong chemical affinity quantum sieving", Micropor. Mesopor. Mat., 313, 110820 (2021).
- R. Xiong, L. Zhang, P. Li, W. Luo, T. Tang, B. Ao, G. Sang, C. Chen, X. Yan, J. Chen, and M. Hirscher, "Highly effective hydrogen isotope separation through dihydrogen bond on Cu(I)-exchanged zeolites well above liquid nitrogen temperature", Chem. Eng. J., 391, 123485 (2020).
- M. Y. Jeon, D. Kim, P. Kumar, P. S. Lee, N. Rangnekar, P. Bai, M. Shete, B. Elyassi, H. S. Lee, K. Narasimharao, S. N. Basahel, S. Al-Thabaiti, W. Xu, H. J. Cho, E. O. Fetisov, R. Thyagarajan, R. F. Dejaco, W. Fan, K. A. Mkhoyan, J. I. Siepmann, and M. Tsapatsis, "Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets", Nature, 543, 690-694 (2017). https://doi.org/10.1038/nature21421
- P. Kumar, D. W. Kim, N. Rangnekar, H. Xu, E. O. Fetisov, S. Ghosh, H. Zhang, Q. Xiao, M. Shete, J. I. Siepmann, T. Dumitrica, B. McCool, M. Tsapatsis, and K. A. Mkhoyan, "One-dimensional intergrowths in two-dimensional zeolite nanosheets and their effect on ultra-selective transport", Nat. Mater., 19, 443-449 (2020). https://doi.org/10.1038/s41563-019-0581-3