DOI QR코드

DOI QR Code

Recent Progress in Hemodialysis Membrane: A Review

혈액투석막의 최근 연구 동향: 리뷰

  • Gayatri Bhamidipati (Life Science and Biotechnology Department, Underwood Division, Underwood International College, Yonsei University) ;
  • Rajkumar Patel (Energy and Environmental Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University)
  • Received : 2024.02.11
  • Accepted : 2024.03.25
  • Published : 2024.04.30

Abstract

Chronic kidney disease leads to many people getting diagnosed with end stage renal disease. This disease is treated by hemodialysis which is the process by which blood is cleaned by a membrane and dialyzer. The membrane for hemodialysis is an important first step of this process as it is responsible for selectively removing impure elements from the blood. Although there are membranes made up of different polymers that are used, they have various disadvantages including hemocompatibility and low selectivity. To combat this, various studies have used a mixture of different polymers to change pore size, increase hemocompatibility and increase selectivity. It was seen that in all the studies conducted, a mixed membrane has greater advantages.

만성 콩팥병은 많은 사람들이 말기병으로 진단받고 있다. 이 질병은 혈액이 막과 투석기에 의해 세척되는 과정인 혈액투석에 의해 치료된다. 혈액투석을 위한 막은 혈액에서 불순물인 요소를 선택적으로 제거하는 역할을 하기 때문에 이 과정은 중요한 첫 단계이다. 다양한 종류의 고분자로 구성된 막이 사용되지만, 낮은 선택도와 혈액적합성과 같은 다양한 단점을 가지고 있다. 이를 해결하기 위해 여러 논문에서 서로 다른 고분자의 혼합물을 사용하여 기공의 크기를 변화시키고 혈액적합성을 높이며 선택성을 높이는 연구를 진행하였다. 그동안 보고된 논문들을 통해 혼합막이 더 큰 장점을 가지고 있음을 알 수 있었다.

Keywords

References

  1. D-H. Kim, H-B. Song, K. Yoon, and M-S. Kang, "Development of pore-filled anion-exchange membranes for high performance reverse electrodialysis", Membr. J., 32, 336 (2022). 
  2. H-B. Song, H-N. Moon, D-H. Kim, and M-S. Kang, "Preparation and electrochemical applications of pore-filled ion-exchange membranes with well-adjusted cross-linking degrees: Part II. Reverse electrodialysis", Membr. J., 27, 441 (2017). 
  3. M. Ali, Z. Jahan, F. Sher, M. B. Khan Niazi, S. J. Kakar, and S. Gul, "Nano architectured cues as sustainable membranes for ultrafiltration in blood hemodialysis", Mater. Sci. Eng. C, 128, 112260 (2021). 
  4. C. Y. Chang, M. S. Wu, C. H. Chang, C. C. Lin, H. L. Lin, C. C. Kao, H. H. Chen, A. Li, C. C. Hsu, and Y. C. Lin, "Effect of dialyzer membranes on mortality in uremic patients undergoing long-term hemodialysis: A Nationwide population-based study using the Taiwan Dialysis Registry Data System 2005-2012", Ther. Apheresis Dial., 26, 55 (2022). 
  5. K. Khabibi, D. Siswanta, and M. Mudasir, "Preparation, characterization, and in vitro hemocompatibility of glutaraldehyde-crosslinked chitosan/carboxymethylcellulose as hemodialysis membrane", Indones. J. Chem., 21, 1120 (2021). 
  6. H. Westphalen, S. Saadati, U. Eduok, A. Abdelrasoul, A. Shoker, P. Choi, H. Doan, and F. Ein-Mozaffari, "Case studies of clinical hemodialysis membranes: Influences of membrane morphology and biocompatibility on uremic blood-membrane interactions and inflammatory biomarkers", Sci. Rep., 10, 14808 (2020). 
  7. J. F. Luo, J. H. Li, J. J. Nie, P. P. Li, H. D. Zhang, and Y. J. Ma, "Effect of hemodialysis on the red blood cell life span in patients with end-stage kidney disease", Ther. Apheresis Dial., 23, 336 (2019). 
  8. B. Prelina, J. Wardana, R. A. Isyatir, Z. Syukriyah, S. Wafiroh, Y. Raharjo, M. Wathoniyyah, A. A. Widati, and M. Z. Fahmi, "Innovation of zeolite modified polyethersulfone hollow fibre membrane for haemodialysis of creatinine", Chem. Chem. Technol., 12, 331 (2018). 
  9. Y. Raharjo, M. Z. Fahmi, S. Wafiroh, A. A. Widati, E. R. Amanda, A. F. Ismail, M. H. D. Othman, D. Santoso, "Incorporation of imprinted-zeolite to polyethersulfone/cellulose acetate membrane for creatinine removal in hemodialysis treatment", J. Teknol., 81, 137 (2019). 
  10. N. Yang, X. Jia, D. Wang, C. Wei, Y. He, L. Chen, and Y. Zhao, "Silibinin as a natural antioxidant for modifying polysulfone membranes to suppress hemodialysis-induced oxidative stress", J. Membr. Sci., 574, 86 (2019). 
  11. P.S. Lim, Y. Lin, M. Chen, X. Xu, Y. Shi, S. Bowry, and B. Canaud, "Precise quantitative assessment of the clinical performances of two high-flux polysulfone hemodialyzers in hemodialysis: validation of a blood-based simple kinetic model versus direct dialysis quantification", Artif. Organs, 42, E55 (2018). 
  12. O. Azhar, Z. Jahan, F. Sher, M. B. K. Niazi, S. J. Kakar, and M. Shahid, "Cellulose acetate-polyvinyl alcohol blend hemodialysis membranes integrated with dialysis performance and high biocompatibility", Mater. Sci. Eng. C, 126, 112127 (2021). 
  13. G. Lorenz, Y. Shen, R. I. Hausinger, C. Scheid, M. Eckermann, S. Hornung, J. Cardoso, M. Lech, A. Ribeiro, B. Haller, C. Holzmann-Littig, D. Steubl, M. C. Braunisch, R. Gunthner, A. Poschenrieder, B. Freitag, M. Weber, P. Luppa, U. Heemann, and C. Schmaderer, "A randomized prospective cross over study on the effects of medium cut-off membranes on T cellular and serologic immune phenotypes in hemodialysis", Sci. Rep., 12, 16419 (2022). 
  14. A. Mollahosseini and A. Abdelrasoul, "Zwitterionization of common hemodialysis membranes: assessment of different immobilized structure impact on hydrophilicity and biocompatibility of poly aryl ether sulfone (PAES) and cellulose triacetate (CTA) hemodialysis membranes", Struct. Chem., 33, 1965 (2022). 
  15. A. Mollahosseini, S. Saadati, and A. Abdelrasoul, "Effects of mussel-inspired co-deposition of 2-hydroxymethyl methacrylate and poly (2-methoxyethyl acrylate) on the hydrophilicity and binding tendency of common hemodialysis membranes: Molecular dynamics simulations and molecular docking studies", J. Comput. Chem., 43, 57 (2022). 
  16. Y. Yang, M. Gao, B. Zhou, P. Cai, T. E. Larsson, J. Zhao, and T. Melander Bowden, "Weak acidic stable carbazate modified cellulose membranes target for scavenging carbonylated proteins in hemodialysis", Carbohydr. Polym., 231, 115727 (2020). 
  17. M. Z. Fahmi, M. Wathoniyyah, M. Khasanah, Y. Rahardjo, S. Wafiroh, and Abdulloh, "Incorporation of graphene oxide in polyethersulfone mixed matrix membranes to enhance hemodialysis membrane performance", RSC Adv., 8, 931 (2018). 
  18. M. Irfan, M. Irfan, S. M. Shah, N. Baig, T. A. Saleh, M. Ahmed, G. Naz, N. Akhtar, N. Muhammad, and A. Idris, "Hemodialysis performance and anticoagulant activities of PVP-k25 and carboxylic-multiwall nanotube composite blended Polyethersulfone membrane", Mater. Sci. Eng. C, 103, 109769 (2019). 
  19. Y. Koga, H. Fujieda, H. Meguro, Y. Ueno, T. Aoki, K. Miwa, and M. Kainoh, "Biocompatibility of polysulfone hemodialysis membranes and its mechanisms: Involvement of fibrinogen and its integrin receptors in activation of platelets and neutrophils", Artif. Organs., 42, E246 (2018). 
  20. Y. Koga, H. Meguro, H. Fujieda, Y. Ueno, K. Miwa, and M. Kainoh, "A new hydrophilic polysulfone hemodialysis membrane can prevent platelet-neutrophil interactions and successive neutrophil activation", Int. J. Artif. Organs, 42, 175 (2019). 
  21. S. K. Verma, A. Modi, A. K. Singh, R. Teotia, and J. Bellare, "Improved hemodialysis with hemocompatible polyethersulfone hollow fiber membranes: In vitro performance", J. Biomed. Mater. Res. Part B Appl. Biomater., 106, 1286 (2018).