• Title/Summary/Keyword: electrochemical methods

Search Result 568, Processing Time 0.022 seconds

CIGS Thin Film Solar Cells by Electrodeposition

  • Saji, Viswanathan S.;Lee, Sang-Min;Lee, Chi-Woo
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.61-70
    • /
    • 2011
  • Thin film solar cells with chalcopyrite $CuInSe_2/Cu(In,Ga)Se_2$ absorber materials, commonly known as "CIS/CIGS solar cells" have recently attracted significant research interest as a potential alternative energy-harvesting system for the next generation. Among the different deposition techniques available for the CIGS absorber layer, electrodeposition is an effective and low cost alternative to vacuum based deposition methods. This article reviews progress in the area of CIGS solar cells with an emphasis on electrodeposited absorber layer. Existing challenges in fabrication of stoichiometric absorber layer are highlighted.

Computational Modelling of Droplet Dynamics Behaviour in Polymer Electrolyte Membrane Fuel Cells: A Review

  • Yong, K.W.;Ganesan, P.B.;Kazi, S.N.;Ramesh, S.;Sandaran, S.C.
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.345-360
    • /
    • 2019
  • Polymer Electrolyte Membrane Fuel Cells (PEMFC) is one of the leading advanced energy conversion technology for the use in transport. It generates water droplets through the catalytic processes and dispenses the water through the gas-flowed microchannels. The droplets in the dispensing microchannel experience g-forces from different directions during the operation in transport. Therefore, this paper reviews the computational modelling topics of droplet dynamics behaviour specifically for three categories, i.e. (i) the droplet sliding down a surface, (ii) the droplet moving in a gas-flowed microchannel, and (iii) the droplet jumping upon coalescence on superhydrophobic surface; in particular for the parameters like hydrophobicity surfaces, droplet sizes, numerical methods, channel sizes, wall conditions, popular references and boundary conditions.

Synthesis and Electronic Properties of Dicarbonyltetrakis(triphenylphosphine) Complexes of Molybdenum(0) and Tungsten(0) (디카르보닐테트라키스 몰리브데늄(0)과 텅스텐(0) 착물들에 대한 합성과 전자적 성질에 관한 연구)

  • Choi, Chil Nam;Kim, Sun Kyu
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.3
    • /
    • pp.194-199
    • /
    • 2000
  • The chemical behavior for Mo(0) and W(0) complexes, [M(CO)$_2$(PPh$_3$)$_4$] (M=Mo and W),has been investigated by UV-vis spectroscopic, magnetic, and electrochemical methods. Three absorption bands are observed in the UV-spectra. The crystal-field-splitti ng energy, spin-pairing energy, and bond strengths were deduced from the spectra. The metal d electrons in both complexes seemed to be delocalized in low-spin state.Metal ligand correlation appeared to strongly depend on bond strengths and diamagnetic properties. In electrochemical processes, both complexes exhibit an irreversible reduction wave.

  • PDF

Fabrication via Ultrasonication and Study of Silicon Nanoparticles

  • Kim, Jin Soo;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.8 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • Photoluminescent porous silicon (PSi) were prepared by an electrochemical etch of n-type silicon under the illumination with a 300 W tungsten filament bulb for the duration of etch. The red photoluminescence emitting at 620 nm with an excitation wavelength of 450 nm is due to the quantum confinement of silicon nanocrystal in porous silicon. As-prepared PSi was sonicated, fractured, and centrifuged in toluene to obtain photoluminescence silicon quantum dots. BET and BHJ methods were employed to study the specific surface area of as-prepared PSi. Optical characterization of red photoluminescent silicon nanocrystal was investigated by UV-vis and fluorescence spectrometer. Also SEM and TEM images of porous silicon and nanoparticles were investigated.

A study on Stress Corrosion Cracking of Sensor Wire in Thermally Insulated Underground Pipeline (이중보온관 부식감지선의 응력부식파괴에 관한 연구)

  • Choe, Yun-Je;Kim, Jeong-Gu
    • Korean Journal of Materials Research
    • /
    • v.12 no.2
    • /
    • pp.103-111
    • /
    • 2002
  • The thermally insulated underground pipelines have been used for district heating system. The sensor wire embedded in the insulation was used for monitoring the insulating resistance between the sensor wire and the pipe. The resistance measurement system detects corrosion of steel pipe under insulation. The corrosion and stress corrosion cracking(SCC) characteristics of sensor wire in synthetic ground water were investigated using the electrochemical methods and constant load SCC tests. The polarization tests were used to study the electrochemical behavior of sensor wire. The sensor wire was passivated at temperatures ranging from 25 to $95^{\circ}C$. However, the applied sensing current larger than passive current resulted in breakdown of passive film. The constant load SCC tests were performed to investigate the effects of applied current and load on the fracture behavior. Stress-corrosion cracks initiated at pits that were produced by sensing current. The growth of the pit involves a tunnelling mechanism, which leads to ductile fracture.

Electrochemical spike oscillation st the Ni electrode interface (Ni 전극 계면에서 전기화학적 spike 발진)

  • 천장호;손광철;라극환
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.12
    • /
    • pp.83-89
    • /
    • 1996
  • The electrochemical spike oscillations at the nickel (Ni) electrode/(0.05M KHC$_{8}$H$_{4}$O$_{4}$) buffer solution (pH 9) interface have been studied using voltammetric and chronoamperometric methods. The nature of the periodic cathodic current spikes is the activation controlled currents due to the hydrogen evolution reaction and depends onthe fractioanl surface coverage of the adsorbed hydrogen intermediate or the cathodic potential. There is two kinds of the waveforms corresponding to two kinds of the cathodic current spike oscillations. The widths, periods, and amplitudes of the cathodic current spikes are 4 ms or 5ms, 151 ms or 302 ms, and < 30 mA or < 275 mA, respectively. The fast discharge and recombination reaction steps are 1.5 times and twice and faster than the slow discharge and recombination reaction steps. The fast and slow discharge and recombination reaction steps are 1.5 times and twice faster than the slow discharge and recombination reaction steps. The fast and slow discharge and recombination reactions corresponding to the fast and slow adsorption sites at the Ni cathode.

  • PDF

Current Status and Roles of Proton Exchange Membrane in Direct Methanol Fuel Cell Systems (직접메탄올연료전지 시스템에서의 수소이온고분자전해질막의 역할 및 현황)

  • Kim, Hae-Kyoung
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.3
    • /
    • pp.219-233
    • /
    • 2009
  • Mobile devices in the next generation such as camera, cell phone, network, Note PC, etc. require higher power and energy sources due to convergences of various functions. Direct methanol fuel cell (DMFC) has been focused as an attractive power source, but there are critical issues involved in its commercialization with regard to the core technologies of materials, components, and system. The requirements of key technologies are differentiated from applications and fuel supply methods. Here, the roles of the proton-conducting membrane are discussed and the current status of DMFC systems is discussed in terms of proton conductivity, methanol permeability, and water management. Materials such as perfluorinated and partially fluorinated membranes, hydrocarbon membranes, composite membranes, and other modified ionomers have been studied. These would explain the critical issues of DMFC and the role of membranes for commercialization.

Pyrocatechol Violet Modified Graphite Pencil Electrode for Flow Injection Amperometric Determination of Sulfide

  • Emir, Gamze;Karakaya, Serkan;Dilgin, Yusuf
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.248-256
    • /
    • 2020
  • In this study, pyrocatechol violet (Pcv) is proposed for the first time as an efficient electrocatalyst for oxidation of sulfide and flow injection analysis (FIA) of sulfide. A graphite pencil electrode (GPE) was modified with Pcv via immersion of the GPE into 0.01 M Pcv solution for 15 min. Cyclic voltammograms (CVs) demonstrated that Pcv/GPE exhibits a good electrocatalytic performance due to shift in the potential from +400 at bare GPE to +70 mV at Pcv/GPE and obtaining an enhancement in the peak current compared with the bare GPE. A linear range between 0.25 and 250 μM sulfide with a detection limit of 0.07 μM was obtained from the recorded current-time curves in Flow Injection Analysis (FIA) of sulfide. Sulfide in water samples was also successfully determined using the proposed FI amperometric methods.

Transport Behaviour of Electroactive Species in Ionic Compounds: A Focus on Li Diffusion through Transition Metal Oxide in Current Flowing Condition

  • Lee, Sung-Jai;Pyun, Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • This article reviewed transport behaviours of electroactive species in ionic compounds, focusing on chemical diffusion of Li through the transition metal oxide in a current flowing condition. For this purpose, a distinction has been first briefly made between migration and diffusion with respect to current, driving force and charge of electroactive species considered. Then, the equations for chemical diffusion are derived theoretically in open-circuit and current flowing conditions. Finally, the experimental methods such as ac impedance spectroscopy and current (potential) transient techniques are described in details for characterising chemical diffusion. In addition, the role of the thermodynamic enhancement factor in chemical diffusion is discussed.

Electrochemical Characterization of Nanosized Electrode Arrays Prepared from Nanoporous Self-Assembled Monolayers

  • Choi, Shin-Jung;Park, Su-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.699-704
    • /
    • 2002
  • We characterized nanoelectrode arrays prepared from self-assembled monolayers (SAMs) by adsorption from a solution containing thiolated $\beta$-cyclodextrin ($\beta$-CD) and n-alkanethiol on the gold electrode surface, using electrochemical methods. While the framework, the n-hexadecanethiol SAM, effectively blocked electron transfer between the electrode surface and solution-phase redox probe molecules, the $\beta$-CD cavities isolated in the forests of n-hexadecanethiol molecules were shown to act as an ultramicroelectrode array. The shapes of cyclic voltammograms of probe molecules were related to the number densities of $\beta$-CD molecules within the monolayer films. Probe molecules that have the correct combination of physical and chemical characteristics were shown to effectively penetrate the framework through the $\beta$-CD pores and exchange electrons with the electrode surface.