DOI QR코드

DOI QR Code

Current Status and Roles of Proton Exchange Membrane in Direct Methanol Fuel Cell Systems

직접메탄올연료전지 시스템에서의 수소이온고분자전해질막의 역할 및 현황

  • Kim, Hae-Kyoung (School of Materials Science and Engineering, Yeungnam University)
  • 김혜경 (영남대학교 신소재공학부)
  • Published : 2009.08.28

Abstract

Mobile devices in the next generation such as camera, cell phone, network, Note PC, etc. require higher power and energy sources due to convergences of various functions. Direct methanol fuel cell (DMFC) has been focused as an attractive power source, but there are critical issues involved in its commercialization with regard to the core technologies of materials, components, and system. The requirements of key technologies are differentiated from applications and fuel supply methods. Here, the roles of the proton-conducting membrane are discussed and the current status of DMFC systems is discussed in terms of proton conductivity, methanol permeability, and water management. Materials such as perfluorinated and partially fluorinated membranes, hydrocarbon membranes, composite membranes, and other modified ionomers have been studied. These would explain the critical issues of DMFC and the role of membranes for commercialization.

Keywords

References

  1. 2008년 국가통합청사진
  2. Jelich Research Center
  3. Fuel Cell Today
  4. DOE annual meeting 2008
  5. 2006 Small Fuel Cell
  6. K. D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, Chem. Rev. 104, 4637 (2004) https://doi.org/10.1021/cr020715f
  7. H. Tang, and P. N. Pintauro, J. Appl. Polym. Sci. 79, 49 (2001) https://doi.org/10.1002/1097-4628(20010103)79:1<49::AID-APP60>3.0.CO;2-J
  8. R. Wycisk, and P. N. Pintauro, J. Membr. Sci. 119, 155 (1996) https://doi.org/10.1016/0376-7388(96)00146-9
  9. X. Ren, T. E. Springer, T. A. Zawodzinski Jr., and S. Gottesfeld, J. Electrochem. Soc. 147, 466 (2000) https://doi.org/10.1149/1.1393219
  10. G. J. M. Janssen and M. L. J. Overvelde, J. Power Sources 101, 117 (2001) https://doi.org/10.1016/S0378-7753(01)00708-X
  11. B. Smitha, D. Suhanva, S. Sridhar, and M. Ramakrishna, J. Membr. Sci. 241, 1 (2002) https://doi.org/10.1016/j.memsci.2004.03.042
  12. C. A. Edmondson and J. J. Fontanella, Solid State Ionics 152-153, 355 (2002) https://doi.org/10.1016/S0167-2738(02)00336-3
  13. S. Y. Cha, N. Tran, A. T. Duong, G. Hou, M. Lefebvre, and A. Attia, PBFC 2003, $1^{st}$ International Conference of Polymer for Battery and Fuel Cell (2003)
  14. K. A. Mauritz,and R. B. Moore, Chem. Rev. 104, 4535 (2004) https://doi.org/10.1021/cr0207123
  15. H. Kim, J. Cho, J. Yoon, and H. Chang, 2001 ECS Conference (2001)
  16. H. Chang, J. R. Kim, J. H. Cho, H. K. Kim, and K. H. Choi, Solid State Ionics 148, 601 (2002) https://doi.org/10.1016/S0167-2738(02)00125-X
  17. J. Guo, G. Sun, O. Wang, G. Wang, Z. Zhou, S. Tang, L. Jiang, B. Zhou, and O. Xin, Carbon 44, 152 (2006) https://doi.org/10.1016/j.carbon.2005.06.047
  18. K. Makino, K. Furukawa, K. Okajima, and M. Sudoh, Electrochim. Acta 51, 961 (2005) https://doi.org/10.1016/j.electacta.2005.04.062
  19. S. Baranton, C. Coutanceau, J. M. Leger, C. Roux, and P. Capron, Electrochim. Acta 51, 517 (2005) https://doi.org/10.1016/j.electacta.2005.05.010
  20. R. Dillon, S. Srinivasan, A. S. Arico, and V. Antonucci, J. Power Sources 127, 112 (2004) https://doi.org/10.1016/j.jpowsour.2003.09.032
  21. W. L. Gore, B. Bahar, A. R. Hobson, J. A. Kodle, and A. Zuckerbrod, (W. L. Gore &Associates, Inc., US patent 5547551, 1996)
  22. C. Xie, J. Bostaph, and J. Pavio, J. Power Sources 136, 55 (2004) https://doi.org/10.1016/j.jpowsour.2004.05.025
  23. K. H. Kim, S. J. Choi, and H. Chang, 203rd ECS Paris Meeting (2003)
  24. G. Q. Lu, F. Q. Liu, and C. Y. Wang, Electrochem. Solid-State Lett. 8, 1099 (2005) https://doi.org/10.1149/1.1825312
  25. HaeKyoung Kim, JungMin Oh, JoonHee Kim, and Hyuk Chang, Journal of Power Sources 162, 497-501 (2006) https://doi.org/10.1016/j.jpowsour.2006.07.025
  26. HaeKyoung Kim, Journal of Power Sources 162, 1232-1235 (2006) https://doi.org/10.1016/j.jpowsour.2006.08.006
  27. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, Chem. Rev. 104, 4587 (2004) https://doi.org/10.1021/cr020711a
  28. J. A. Drake, W. Wilson, and K. Killeen, J. Electrochem. Soc. 151, A413 (03 2004, 2004) https://doi.org/10.1149/1.1646150
  29. A. E. Steck, Proceedings of 1st International Symposium on New Material Fuel Cell Systems, 74, (1995, 19950)
  30. H. L. Yeager, B. Kipling, and R. L. Dotson, J. Electrochem. Soc. 127, 303 (1980) https://doi.org/10.1149/1.2129660
  31. M. A. F. Robertson, and H. L. Yeager, Macromolecules 29, 5166 (1996) https://doi.org/10.1021/ma951616p
  32. M. Doyle, M. E. Lewittes, M. G. Roelofs, S. A. Perusich, and S. A. Lowrey, J. Membr. Sci. 184, 257 (2001) https://doi.org/10.1016/S0376-7388(00)00642-6
  33. S. A. Perusich, P. Avakian, and M. Y. Keating, Macromolecules 26, 4756 (1993) https://doi.org/10.1021/ma00070a005
  34. R. G. Rajendran, MRS Bullet. 30, 587 (2005) https://doi.org/10.1557/mrs2005.165
  35. T. D. Gierke, and W. Y. Hsu, Perfluorinated Ionomer Membranes. A. Eisenberg, H. L. Yeager, Eds., ACS Symposium Series No. 180. (American Chemical Society, Washington, DC, 1982), p 283
  36. M. Eikerling, A. A. Kornyshev, and U. Stimming, J. Phys. Chem. B 101, 10807 (1997) https://doi.org/10.1021/jp972288t
  37. H. G. Haubold, T. Vad, H. Jungbluth, and P. Hiller, Electrochim. Acta 46, 1559 (2001) https://doi.org/10.1016/S0013-4686(00)00753-2
  38. P. J. James, T. J. McMaster, N. J. M, and M. J. Miles, Polymer 41, 4223 (2000) https://doi.org/10.1016/S0032-3861(99)00641-2
  39. J. A. Drake, W. Wilson, and K. Killeen, J. Electrochem. Soc. 151, A413 (03 2004, 2004) https://doi.org/10.1149/1.1646150
  40. H. A. Every, M. A. Hickner, J. E. McGrath, and T. A. Zawodzinski Jr., J. Membr. Sci. 250 , 183 (2005) https://doi.org/10.1016/j.memsci.2004.10.026
  41. P. Choi, N. H. Jalani, and R. Datta, J. Electrochem. Soc. 152, A1548 (2005) https://doi.org/10.1149/1.1945668
  42. P. Argyropoulos, K. Scott, A. K. Shukla, and C. Jackson, J. Power Sources 123, 190 (2003) https://doi.org/10.1016/S0378-7753(03)00558-5
  43. V. M. Barragan, and A. Heinzel, J. Power Sources, 104, 66 (2002) https://doi.org/10.1016/S0378-7753(01)00896-5
  44. J. Divisek, J. Fuhrmann, K. Gartner, and R. Jung, J. Electrochem. Soc. 150, A811 (2003) https://doi.org/10.1149/1.1572150
  45. G. Murgia, L. Pisani, A. K. Shukla, and K. Scott, J. Electrochem. Soc. 150, A1231 (2003) https://doi.org/10.1149/1.1596951
  46. Z. H. Wang, and C. Y. Wang, Proceedings of International Symposium on Direct Methanol Fuel Cells. 286, (2001)
  47. Z. H. Wang, and C. Y. Wang, J. Electrochem. Soc. 150, A508 (2003) https://doi.org/10.1149/1.1559061
  48. M. W. Verbrugge, J. Electrochem. Soc. 136, 417 (1989) https://doi.org/10.1149/1.2096646
  49. J. Cruickshank, and K. Scott, J. Power Sources 70, 40 (1998) https://doi.org/10.1016/S0378-7753(97)02626-8
  50. X. Ren, and S. Gottesfeld, J. Electrochem. Soc. 144, L267 (2001) https://doi.org/10.1149/1.1837940
  51. X. Ren, M. S. Wilson, and S. Gottesfeld, J. Electrochem. Soc. 143, L12 (1996) https://doi.org/10.1149/1.1836375
  52. Wei, C. Stone, and A. E. Steck, (Power Systems, Inc., US Patent 5422411, 1995)
  53. A. E. Steck, and C. Stone, Proceedings of 2nd International Symposium On New Material Fuel-Cell and Modern Battery Systems II, 792, (1997)
  54. H. Kim, (Samsung Electronics, US Patent, 6774150B2, 2004).]
  55. L. Gubler, H. Kuhn, T. J. Schmidt, G. G. Scherer, H. P. Brack, and K. Simbeck, Fuel Cells 4, 196 (2004) https://doi.org/10.1002/fuce.200400019
  56. M. Patri, V. R. Hande, S. Phadnis, B. Somaiah, S. Roychoudhury, and P. C. Deb, Polym Adv.Technol. 15, 270 (2004) https://doi.org/10.1002/pat.472
  57. K. Scott, W. M. Taama, and P. Argyropoulos, J. Membr. Sci. 171, 119 (2000) https://doi.org/10.1016/S0376-7388(99)00382-8
  58. M. Shen, S. Roy, J. W. Kuhlmann, K. Scott, K. Lovell, and J. A. Horsfall, J. Membr. Sci. 251, 121 (2005) https://doi.org/10.1016/j.memsci.2004.11.006
  59. V. Saarinen, T. Kallio, M. Paronen, P. Tikkanen, E. Rauhala, and K. Kontturi, Electrochim. Acta 50, 3453 (2005) https://doi.org/10.1016/j.electacta.2004.12.022
  60. A. S. Arico, V. Baglio, P. Creti, A. Di Blasi, V. Antonucci, J. Brunea, A. Chapotot, A. Bozzi, and J. Schoemans, J. Power Sources 123, 107 (2003) https://doi.org/10.1016/S0378-7753(03)00528-7
  61. J. A. Kerres, J. Membr. Sci. 185, 3 (2001) https://doi.org/10.1016/S0376-7388(00)00631-1
  62. M. S. Tirumkudulu, and W. B. Russel, Langmuir 21, (2005)
  63. H. R. Allcock, M. A. Hofmann, C. M. Ambler, and R. V. Morford, Macromolecules 35, 3484 (2002) https://doi.org/10.1021/ma0116295
  64. Y. A. Elabd, E. Napadensky, J. A. Sloan, D. M. Crawford, and C. W. Walker, J. Membr. Sci. 217, 227 (2003) https://doi.org/10.1016/S0376-7388(03)00127-3
  65. F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. McGrath, J. Membr. Sci. 197, 231 (2002) https://doi.org/10.1016/S0376-7388(01)00620-2
  66. C. Genies, R. Mercier, B. Sillion, N. Cornet, G. Gebel, and M. Pineri, Polymer 42, 359 (2001) https://doi.org/10.1016/S0032-3861(00)00384-0
  67. Y. S. Kim, F. Wang, M. Hickner, S. McCartney, Y. T. Hong, W. Harrison, T. A. Zawodzinski, and J. E. McGrath, J. Polym. Sci. B 41, 2816 (2003) https://doi.org/10.1002/polb.10496
  68. B. Smitha, S. Sridhar, and A. A. Khan, Macromolecules 37, 2233 (2004) https://doi.org/10.1021/ma0355913
  69. J. Ding, C. Chuy, and S. Holdcroft, Macromolecules 35, 1348 (2002) https://doi.org/10.1021/ma010970m
  70. W. C. Choi, J. D. Kim, and S. I. Woo, J. Power Sources 96, 411 (2001) https://doi.org/10.1016/S0378-7753(00)00602-9
  71. E. Smotkin, T. Mallouk, M. Wardchael, and K. Ley, (US Patent 5846669, 1998)
  72. S. R. Yoon, G. H. Hwang, W. I. Cho, I. H. Oh, S. A. Hong, and H. Y. Ha, J. Power Sources 106, 215 (2002) https://doi.org/10.1016/S0378-7753(01)01048-5
  73. D. Kim, M. A. Scibioh, S. Kwak, I. H. Oh, and H. Y. Ha, Electrochem. Commun. 6, 1069 (2004) https://doi.org/10.1016/j.elecom.2004.07.006
  74. K. Lee, J. H. Nam, J. H. Lee, Y. Lee, S. M. Cho, C. H. Jung, H. G. Choi, Y. Y. Chang, J. U. Kwon, and J. D. Nam, Electrochem. Commun. 7, 113 (2005) https://doi.org/10.1016/j.elecom.2004.11.011
  75. D. Kim, M. A. Scibioh, S. Kwak, I. H. Oh, and H. Y. Ha, J. Power Sources (in press)
  76. S. Ren, C. Li, X. Zhao, Z. Wu, S. Wang, G. Sun, Q. Xin, and X. Yang, J. Membr. Sci. 247, 59 (2005) https://doi.org/10.1016/j.memsci.2004.09.006
  77. Y. Higuchi, N. Terada, H. Shimoda, and S. Hommura, (Ashai Glass Co., EP1139472, 2001)
  78. T. Yamaguchi, F. Miyata, and S. Nakao, Adv. Mater. 15, 1198 (2003) https://doi.org/10.1002/adma.200304926
  79. T. Yamaguchi, H. Kuroki, and F. Miyata, Electrochem. Commun. 7, 730 (2005) https://doi.org/10.1016/j.elecom.2005.04.030
  80. J. A. Kerres, A. Ullrich, F. Meier, and T. Haering, J. Membr. Sci. 206, 443 (2002) https://doi.org/10.1016/S0376-7388(01)00787-6
  81. J. A. Kerres, and A. Ullrich, Sep. Purif. Technol. 22-23, 1 (2001) https://doi.org/10.1016/S1383-5866(00)00146-5
  82. J. Lin, M. Ouyang, J. M. Fenton, H. R. Kunz, J. T. Koberstein, and M. B. Cutlip, J. Appl. Polym. Sci. 70, 121 (1998) https://doi.org/10.1002/(SICI)1097-4628(19981003)70:1<121::AID-APP12>3.0.CO;2-A
  83. C. Hasiotis, Electrochim. Acta 46, 2401 (2001) https://doi.org/10.1016/S0013-4686(01)00437-6
  84. S. Ren, G. Sun, C. Li, Z. Wu, W. Jin, and W. Chen, Mater. Lett. 60, 44 (2006) https://doi.org/10.1016/j.matlet.2005.07.068
  85. X. Li, D. Chen, D. Xu, C. Zhao, Z. H. Wang, H. Lu, and H. Na, J. Membr. Sci. (in press)
  86. M. Watanabe, paper presented at the The Electrochemical Society Meeting PV 94-2, Pennington NJ 1994
  87. P. L. Antonucci, A. S. Arico, P. Creti, E. Ramunni, and V. Antonucci, Solid State Ionics 125, 431 (1999) https://doi.org/10.1016/S0167-2738(99)00206-4
  88. K. A. Mauritz, Mater. Sci. Eng. C 6, 121 (1998).] https://doi.org/10.1016/S0928-4931(98)00042-3
  89. Q. Deng, R. B. Moore, and K. A. Mauritz, Chem. Mater. 7, 2259 (1995) https://doi.org/10.1021/cm00060a012
  90. Q. Deng, Y. Hu, R. B. Moore, C. L. McCormick, and K. A. Mauritz, Chem. Mater. 9, 36 (1997) https://doi.org/10.1021/cm950552u
  91. Q. Deng, C. A. Wilkie, R. B. Moore, and K. A. Mauritz, Polymer 39, 5961 (1998) https://doi.org/10.1016/S0032-3861(98)00055-X
  92. D. H. Jung, S. Y. Cho, D. H. Peck, D. R. Shin, and J. S. Kim, J. Power Sources 106, 173 (2002) https://doi.org/10.1016/S0378-7753(01)01053-9
  93. R. A. Zoppi, I. V. P. Yoshida, and S. P. Nunes, Polymer 39, 1309 (1997) https://doi.org/10.1016/S0032-3861(97)00421-7
  94. R. A. Zoppi, and S. P. Nunes, Electroanal. Chem. 445, 39 (1997) https://doi.org/10.1016/S0022-0728(97)00513-5
  95. H. Kim, J. Cho, J. Yoon, and H. Chang, (Korea Patent KR-P0413801, 2004)
  96. P. Dimitrova, K. A. Friedrich, U. Stimming, and B. Vogt, Solid State Ionics 150, 115 (2002) https://doi.org/10.1016/S0167-2738(02)00267-9
  97. S. P. Nunes, B. Ruffmann, E. Rikowski, S. Vetter, and K. Richau, J. Membr. Sci. 203, 215 (2002) https://doi.org/10.1016/S0376-7388(02)00009-1
  98. C. K. Shin, G. Maier, B. Andreaus, and G. G. Scherer, J. Membr. Sci. 245, 147 (2004) https://doi.org/10.1016/j.memsci.2004.07.027
  99. G. Q. Lu, F. Q. Liu, and C. Y. Wang, Electrochem. Solid-State Lett. 8, 1099 (2005)
  100. S. Gottesfeld, Proceedings of Small Fuel Cells for Portable Applications, 6th Edition (2005)