DOI QR코드

DOI QR Code

Design of Non-Flammable Electrolytes for Highly Safe Lithium-Ion Battery

리튬 이온전지의 안전성을 구현하기 위한 난연성 전해액의 설계

  • Published : 2009.08.28

Abstract

The development of lithium-ion battery (LIB) technologies and their application in the field of large-scale power sources, such as electric vehicles (EVs), hybrid EVs, and plug-in EVs require enhanced reliability and superior safety. The main components of LIBs should withstand to the inevitable heating of batteries during high current flow. Carbonate solvents that contribute to the dissociation of lithium salts are volatile and potentially combustible and can lead to the thermal runaway of batteries at any abuse conditions. Recently, an interest in nonflammable materials is greatly growing as a means for improving battery safety. In this review paper, novel approaches are described for designing highly safe electrolytes in detail. Non-flammability of liquid electrolytes and battery safety can be achieved by replacing flammable organic solvents with thermally resistive materials such as flame-retardants, fluorinated organic solvents, and ionic liquids.

전기자동차, 하이브리드 및 플러그 인 전기자동차 등과 같은 대용량 전력공급을 요하는 영역으로의 리튬 이온전지의 응용을 위해서는 우수한 전지 신뢰성 및 안전성이 요구되어진다. 이러한 요구에 부응하기 위해서는 전지 구성 성분들은 대전류가 흐르는 조건 하에서 불가피하게 발생되는 열에 대한 저항성이 있어야 한다. 그러나 리튬 염을 해리하는 기능을 갖는 카보네이트계 유기 용매는 휘발성이 높고, 가연성 물질이기 때문에 오용 조건에서 전지의 발화, 폭발 등과 같은 열폭주 현상을 억제하지 못하고 연료로 작용하기 때문에 전지의 안전성에 문제를 일으킬 수 있다. 최근 전지의 안전성을 향상시키기 수단으로 난연성 소재에 대한 관심도가 크게 증가하고 있다. 본 총설에서는 난연성 전해액을 설계하기 위한 최근 연구내용을 소개하고자 한다. 액체 전해액의 난연화는 유기용매 일부를 난연성 소재로 대체하는 것에 의해 이루어질 수 있으며 난연제, 불소화 유기용매 및 이온성 액체를 사용하는 접근방법을 통해 전지의 고안전성을 실현할 수 있을 것이다.

Keywords

References

  1. P. G. Balakrishnan, R. Ramesh, and T. P. Kumar, 'Safety mechanisms in lithium-ion batteries', J. Power Sources, 155, 401-414 (2006) https://doi.org/10.1016/j.jpowsour.2005.12.002
  2. N. -S. Choi, I. A. Profatilova, S. -S. Kim, and E. -H. Song, 'Thermal reactions of lithiated graphite anode in LiPF6-based electrolyte', Thermochim. Acta, 480(1-2), 10-14 (2008) https://doi.org/10.1016/j.tca.2008.09.017
  3. K. -C. Moller, T. Hodal, W. K. Appel, and M. Winter, J. O. Besenhard, 'Fluorinated organic solvents in electrolytes for lithium ion cells', J. Power Sources, 97-98, 595 (2001) https://doi.org/10.1016/S0378-7753(01)00537-7
  4. K. Xu, S. Zhang, J. L. Allen, and T. R. Jow, 'Nonflammable Electrolytes for Li-Ion Batteries Based on a Fluorinated Phosphate', J. Electrochem. Soc., 149, A1079 (2002) https://doi.org/10.1149/1.1490356
  5. L.Wu, Z. Song, L. iu, X. Guo, L. Kong, H. Zhan, Y. Zhou, and Z. Li, 'A new phosphate-based nonflammable electrolyte solvent for Li-ion batteries', J. Power Sources, 188(2), 570 (2009) https://doi.org/10.1016/j.jpowsour.2008.12.070
  6. K. Xu, M.S. Ding, S. Zhang, J. L. Allen, and T. R. Jow, 'An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes', J. Electrochem. Soc., 149(5), A622 (2002) https://doi.org/10.1149/1.1467946
  7. X. Wang, E. Yasukawa, and S. Kasuya, 'Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: I. Fundamental Properties', J. Electrochem. Soc. 148, A1058 (2001) https://doi.org/10.1149/1.1397773
  8. X. Wang, E. Yasukawa, and S. Kasuya, 'Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: II. The Use of an amorphous carbon anode', J. Electrochem. Soc. 148, A1066 (2001) https://doi.org/10.1149/1.1397774
  9. K. Xu, M. S. Ding, S. S. Zhang, J. L. Allen, and T. R. Jow, 'An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes',J. Electrochem. Soc. 149, A622 (2002) https://doi.org/10.1149/1.1467946
  10. J. W. Hastie, 'Molecular-basis of flame inhibition', J Res Natl Bur Stand Sec A Phys Chem., 77A, 733 (1973) https://doi.org/10.6028/jres.077A.045
  11. K. Xu, S. S. Zhang, J. L. Allen, and T. R. Jow, 'Nonflammable Electrolytes for Li-Ion Batteries Based on a Fluorinated Phosphate', J. Electrochem. Soc., 149, A1079 (2002) https://doi.org/10.1149/1.1490356
  12. K. Xu, M. S. Ding, S. S. Zhang, J. L. Allen, and T. R. Jow, 'Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries: I. Physical and electrochemical properties', J. Electrochem. Soc., 150, A161 (2003) https://doi.org/10.1149/1.1533040
  13. K. Xu, S. S. Zhang, J. L. Allen, and T. R. Jow, 'Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries: II. Performance in cell', J. Electrochem. Soc., 150, A170 (2003) https://doi.org/10.1149/1.1533041
  14. M. S. Ding, K. Xu, and T.R. Jow, 'Effects of tris(2,2,2-trifluoroethyl) phosphate as a flame-retarding cosolvent on physicochemical properties of electrolytes of LiPF6 in ECPC-EMC of 3 : 3 : 4 weight ratios', J. Electrochem. Soc., 149, A1489 (2002) https://doi.org/10.1149/1.1513556
  15. C. W. Lee and R. Venkatachalapathy J. Prakash, 'A novel flame-retardant additive for lithium batteries', Electrochem. Solid-State Lett., 3, 63 (2000) https://doi.org/10.1149/1.1390959
  16. S. S. Zhang, K. Xu, and T. R. Jow, 'Tris(2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries', J. Power Sources, 113, 166 (2003) https://doi.org/10.1016/S0378-7753(02)00537-2
  17. X. L. Yao, S. Xie, C. H. Chen, Q. S. Wang, J. H. Sun, Y. L. Li, and S. X. Lu, J. Power Sources, 144, 170 (2005) https://doi.org/10.1016/j.jpowsour.2004.11.042
  18. D. D. MacNeil, L. Christensen, J. Landucci, J. M. Paulsen, and J. R. Dahn, 'An Autocatalytic Mechanism for the Reaction of $Li_{x}CoO_{2}$ in Electrolyte at Elevated Temperature', J. Electrochem. Soc., 147(3), 970 (2000) https://doi.org/10.1149/1.1393299
  19. D. D. MacNeila and J. R. Dahn, 'Can an Electrolyte for Lithium-Ion Batteries Be Too Stable?', J. Electrochem. Soc., 150, A21 (2003) https://doi.org/10.1149/1.1521756
  20. M. Ihara, B. T. Hang, K. Sato, M. Egashira, S. Okada, and J.-I. Yamaki, 'Properties of carbon anodes and thermal stability in $LiPF_{6}$/methyl difluoroacetate electrolyte' J. Electrochem. Soc., 150(11), A1476 (2003) https://doi.org/10.1149/1.1614269
  21. Q. Zhang, H. Noguchi, H. Wang, M. Yoshio, M. Otsuki, and T. Ogino, 'Improved thermal stability of $LiCoO_{2}$ by cyclotriphosphazene additives in lithium-ion batteries', Chem. Lett., 34(7), 1012 (2005) https://doi.org/10.1246/cl.2005.1012
  22. M. Kobayashi, T. Inoguchi, T. Iida, T. Tanioka, H. Kumase, and Y. Fukai, 'Development of direct fluorination technology for application to materials for lithium battery', J. Fluorine Chem. 120, 105 (2003) https://doi.org/10.1016/S0022-1139(02)00317-2
  23. R. McMillan, H. Slegr, Z. X. Shu, and W. Wang, 'Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes' J. Power Sources, 81-82, 20 (1999) https://doi.org/10.1016/S0378-7753(98)00201-8
  24. I. A. Profatilova, N. -S. Choi, S. W. Roh, and S. S. Kim 'Electrochemical and thermal properties of graphite electrodes with imidazolium- and piperidinium-based ionic liquids', J. Power Sources, 192(2) 636 (2009) https://doi.org/10.1016/j.jpowsour.2009.03.041
  25. K. Yokoyama, T. Sasano, and A. Hiwara, U.S. Patent 6,010,806 (2000)
  26. J. Arai, 'A novel non-flammable electrolyte containing methyl nonafluorobutyl ether for lithium secondary atteries', J. Appl. Electrochem. 32, 1071 (2002) https://doi.org/10.1023/A:1021231514663
  27. J. Arai, 'No-flash-point electrolytes applied to amorphous carbon/$Li_{1+x}Mn_{2}O_{4}$ cells for EV use', J. Power Sources 119-121, 388 (2003) https://doi.org/10.1016/S0378-7753(03)00258-1
  28. J. Arai, 'Nonflammable methyl nonafluorobutyl ether for electrolyte used in lithium secondary batteries', J. Electrochem. Soc., 150, A219 (2003) https://doi.org/10.1149/1.1538224
  29. Y. Sasaki, 'Organic electrolytes of secondary lithium batteries', Electrochemistry, 76(1), 2 (2008) https://doi.org/10.5796/electrochemistry.76.2
  30. M. Morita, T. Kawasaki, N. Yoshimoto, M. Ishikawa, 'Nonflammable organic electrolyte solution based on perfluoro-ether solvent for lithium ion batteries', Electrochemistry, 71, 1067 (2003)
  31. P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram and M. Gratzel, 'Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts', Inorg. Chem., 35, 1168 (1996) https://doi.org/10.1021/ic951325x
  32. S. Carda-Broch, A. Berthod, and A.W. Armstrong, 'Solvent Properties of 1-butyl-3-methyl-imidazolium Hexafluorophosphate Ionic Liquid', Anal. Bioanal. Chem., 375, 191 (2003) https://doi.org/10.1007/s00216-002-1684-1
  33. C. Nanjundiah, S. F. McDevitt, and V. R. Koch, 'Differential Capacitance Measurements in Solvent-Free Ionic Liquids at Hg and C Interfaces', J. Electrochem. Soc., 144, 3392 (1997) https://doi.org/10.1149/1.1838024
  34. J. Fuller, A. C. Bread and R. T. Carlin, 'Ionic liquidpolymer gel electrolytes from hydrophilic and hydrophobic ionic liquids', J. Electroanal Chem., 459, 29 (1998) https://doi.org/10.1016/S0022-0728(98)00285-X
  35. A. B. McEwen, H. L. Ngo, K. Le Compte, and X. L. Goldman, 'Electrochemical Properties of Imidazolium Salt Electrolytes for Electrochemical Capacitor Applications', J. Electrochem. Soc., 146, 1687 (1999) https://doi.org/10.1149/1.1391827
  36. D. R. MacFarlane, J. Golding, S. Forsyth, M. Forsyth, and G. B. Deacon, 'Low viscosity ionic liquids based on organic salts of the dicyanamide anion', Chem. Commun., 1430 (2001) https://doi.org/10.1039/b103064g
  37. J. N. Barisci, G. G. Walace, D. R. MacFarlane, and R. H. Baughman, 'Investigation of ionic liquids as electrolytes for carbon nanotube electrodes', Electrochem. Commun., 6, 22 (2004) https://doi.org/10.1016/j.elecom.2003.09.015
  38. D. R. MacFarlane, J. Sun, J. Golding, P. Meakin, and M. Forsyth, 'High conductivity molten salts based on the imide ion', Electrochim. Acta, 45, 1271 (2000) https://doi.org/10.1016/S0013-4686(99)00331-X
  39. J. Sun, M. Forsyth, and D. R. MacFarlane, 'Room-Temperature Molten Salts Based on the Quaternary Ammonium Ion', J. Phys. Chem. B, 102, 8858 (1998) https://doi.org/10.1021/jp981159p
  40. J. Fuller, R. T. Carlin, H. C. De Long, and D. Haworth, 'Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts', J. Chem. Soc. Chem. Commun., 299, (1994) https://doi.org/10.1039/C39940000299
  41. G. S. Owens and M. M. Abu-Omar, 'Comparative kinetic investigations in ionic liquids using the MTO/peroxide system', J. Mol. Cat A: Chem., 187, 215 (2002) https://doi.org/10.1016/S1381-1169(02)00236-4
  42. H. Matsumoto, T. Matsuda, and Y. Miyazaki, 'Room Temperature Molten Salts Based on Trialkylsulfonium Cations and Bis(trifluoromethylsulfonyl)imide', Chem. Lett., 1430, (2000)
  43. H. Sakaebe, H. Matsumoto, and K. Tatsumi, 'Application of room temperature ionic liquids to Li batteries', Electrochim. Acta, 53(3), 1048 (2007) https://doi.org/10.1016/j.electacta.2007.02.054
  44. H. Matsumoto, H. Kageyama, and Y. Miyazaki, 'Room temperature ionic liquids based on small aliphatic ammonium cations and asymmetric amide anions, Chem. Commun., 1726, (2002) https://doi.org/10.1039/b204046h
  45. H. Matsumoto, H. Sakaebe, and K. Tatsumi, 'Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte', J. Power Sources, 146(1-2), 45 (2005) https://doi.org/10.1016/j.jpowsour.2005.03.103
  46. Z.-B. Zhou, H. Matsumoto, and K. Tatsumi, 'Structure and properties of new ionic liquids based on alkyl- and alkenyltrifluoroborates', ChemPhysChem, 6(7), 1324 (2005) https://doi.org/10.1002/cphc.200500094
  47. Y. Wang, K. Zaghib, A. Guerfi, F.C. Bazito, R. M. Torresi, and J. R. Dahn, 'Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials', Electrochim. Acta, 52(22), 6346 (2007) https://doi.org/10.1016/j.electacta.2007.04.067
  48. M. C. Kroon, W. Buijs, C. J. Peters, and G. -J. Witkamp, 'Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids', Thermochim. Acta, 456(1-2), 40 (2007) https://doi.org/10.1016/j.tca.2007.09.003
  49. M. Gali ski, A. Lewandowski, I. Stepniak, 'Ionic liquids as electrolytes', Electrochim. Acta, 51, 5567 (2006) https://doi.org/10.1016/j.electacta.2006.03.016
  50. Y. Katayama, M. Yukumoto, and T. Miura, 'Electrochemical intercalation of lithium into graphite in roomtemperature molten salt containing ethylene carbonate', Electrochem. Solid State Lett., 6, A96 (2003) https://doi.org/10.1149/1.1566213
  51. H. Zheng, K. Jiang, T. Abe, and Z. Ogumi, 'Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes', Carbon 44, 203 (2006) https://doi.org/10.1016/j.carbon.2005.07.038
  52. T. Sato, T. Maruo, S. Marukane, and K. Takagi, 'Ionic liquids containing carbonate solvent as electrolytes for lithium ion cells', J. Power sources, 138, 253 (2004) https://doi.org/10.1016/j.jpowsour.2004.06.027
  53. A. Lewandowski and A. widerska-Mocek, 'Properties of the graphite-lithium anode in N-methyl-Npropylpiperidinium bis(trifluoromethanesulfonyl)imide as an electrolyte', J. Power sources, 171, 938 (2007) https://doi.org/10.1016/j.jpowsour.2007.06.005
  54. H. Sakaebe and H. Matsumoto, 'N-Methyl-N-propylpiperidinium bis(trifluoro-methanesulfonyl)imide (PP13-TFSI)-novel electrolyte base for Li battery', Electrochem. Commun., 5, 594 (2003) https://doi.org/10.1016/S1388-2481(03)00137-1
  55. R. Hagiwara, T. Hirashige, T. Tsuda, and Y. Ito, 'Acidic 1-ethyl-3-methylimidazolium fluoride: a new room temperature ionic liquid', J. Fluorine Chem., 99, 1 (1999) https://doi.org/10.1016/S0022-1139(99)00111-6
  56. A. Lewandowski, and I. St pniak, 'Relative molar Gibbs energies of cation transfer from a molecular liquid to ionic liquids at 298.15 K', Phys. Chem. Chem. Phys. 5, 4215 (2003) https://doi.org/10.1039/b305734h
  57. A. Noda, and M. Watanabe, 'Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts', Electrochim. Acta, 45, 1265 (2000) https://doi.org/10.1016/S0013-4686(99)00330-8
  58. H. Ohno, and K. Fukumoto, 'Progress in ionic liquids for electrochemical reactions matrices', Electrochemistry, 76(1), 16 (2008) https://doi.org/10.5796/electrochemistry.76.16
  59. W. Ogihara, M. Yoshizawa, and H. Ohno, 'Novel alkali metal ionic liquids: N-ethylimidazolium alkali metal sulfates', Chem. Lett., 9, 880 (2002) https://doi.org/10.1246/cl.2002.880
  60. H. Ohno, 'Electrochemical aspects of ionic liquids,' Wiley-Interscience, New York, (2005)
  61. H. Ohno, 'Functional design of ionic liquids', Bull. Chem. Soc. Jpn., 79, 1665 (2006) https://doi.org/10.1246/bcsj.79.1665
  62. C. Tiyapiboonchaiya, J. M. Pringle, J. Sun, N. Byrne, P. C. Howlett, D. R. Macfarlane, and M. Forsyth, 'The zwitterion effect in high-conductivity polyelectrolyte materials', Nature materials, 3, 29 (2004) https://doi.org/10.1038/nmat1044