DOI QR코드

DOI QR Code

CIGS Thin Film Solar Cells by Electrodeposition

  • Saji, Viswanathan S. (Department of Advanced Materials Chemistry, Korea University) ;
  • Lee, Sang-Min (Department of Advanced Materials Chemistry, Korea University) ;
  • Lee, Chi-Woo (Department of Advanced Materials Chemistry, Korea University)
  • Received : 2011.05.18
  • Accepted : 2011.05.22
  • Published : 2011.05.31

Abstract

Thin film solar cells with chalcopyrite $CuInSe_2/Cu(In,Ga)Se_2$ absorber materials, commonly known as "CIS/CIGS solar cells" have recently attracted significant research interest as a potential alternative energy-harvesting system for the next generation. Among the different deposition techniques available for the CIGS absorber layer, electrodeposition is an effective and low cost alternative to vacuum based deposition methods. This article reviews progress in the area of CIGS solar cells with an emphasis on electrodeposited absorber layer. Existing challenges in fabrication of stoichiometric absorber layer are highlighted.

Keywords

References

  1. M. Kemell, M. Ritala and M. Leskelä, 'Thin film deposition methods for $CuInSe_2$ solar cells' Crit. Rev. Solid State Mater. Sci., 30, 1 (2005). https://doi.org/10.1080/10408430590918341
  2. K. L. Chopra, P. D. Paulson and V. Dutta, 'Thin film solar cells: an overview' Prog. Photovolt. Res. Appl., 12, 69 (2004). https://doi.org/10.1002/pip.541
  3. M. A. Green, 'The path to 25% silicon solar cell efficiency: history of silicon cell evolution' Prog. Photovolt. Res. Appl., 17, 183 (2009). https://doi.org/10.1002/pip.892
  4. M. Grätzel, 'Photovoltaic and photoelectrochemical conversion of solar energy' Phil. Trans. R. Soc., 365, 993 (2007). https://doi.org/10.1098/rsta.2006.1963
  5. R. L. Stolk, H. Li, C. H. M. van der Werf and R. E. I. Schropp, 'Tandem and triple junction silicon thin film solar cells with intrinsic layers prepared by hot-wire CVD' Thin Solid Films, 501, 256 (2006). https://doi.org/10.1016/j.tsf.2005.07.150
  6. M. A. Arturo, 'Can we improve the record efficiency of CdS/CdTe solar cells' Sol. Energy Mater. Sol. Cells, 90, 2213 (2006). https://doi.org/10.1016/j.solmat.2006.02.019
  7. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, '19.9%-efficient ZnO/ $CdS/CuInGaSe_2$ solar cell with 81.2% fill factor' Prog. Photovolt. Res. Appl., 16, 235 (2008). https://doi.org/10.1002/pip.822
  8. J. J. Loferski, 'Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion' J. Appl. Phys., 27, 777 (1956). https://doi.org/10.1063/1.1722483
  9. S. Siebentritt, 'Wide gap chalcopyrites: material properties and solar cells' Thin Solid Films, 403-404, 1 (2002). https://doi.org/10.1016/S0040-6090(01)01525-5
  10. R. W. Birkmire, 'Compound polycrystalline solar cells: Recent progress and Y2 K perspective' Sol. Energy Mater. Sol. Cells, 65, 17 (2001). https://doi.org/10.1016/S0927-0248(00)00073-8
  11. W. N. Shafarman, R. Klenk and B. E. McCandless, 'Device and material characterization of $Cu(InGa)Se_2$ solar cells with increasing band gap' J. Appl. Phys., 79, 7324 (1996). https://doi.org/10.1063/1.361431
  12. A. Jayapayalan, H. Sankaranamyanan, M. Shankaradas, P. Panse, R. Narayanaswamy, C. S. Ferekides and D. L. Morel, Interface mechanisms in CIGS solar cells, CP462, NCP V Photovoltaics Program Review. 1999, 152-157, Ed. M. A1-Jassim, J. P. Thornton and J. M. Gee, The American Institute of Physics.
  13. H. W. Schock and R. Noufi, 'CIGS-based solar cells for the next millennium' Prog. Photovolt. Res. Appl., 8, 151 (2000). https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<151::AID-PIP302>3.0.CO;2-Q
  14. S. Al. Alagappan and S. Mitra, 'Optimizing the design of CIGS-based solar cells: a computational approach' Mater. Sci. Eng. B, 116, 293 (2005). https://doi.org/10.1016/j.mseb.2004.05.048
  15. T. Negami, M. Nishitani, N. Kohara, Y. Hashimoto and T. Wada, 'Real time composition monitoring methods in physical vapor deposition of $Cu(In,Ga)Se_2$ thin films' Mater. Res. Soc. Symp. Proc., 426, 267 (1996). https://doi.org/10.1557/PROC-426-267
  16. M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon and R. Noufi, 'Progress toward 20% efficiency in $Cu(In,Ga)Se_2$ polycrystalline thin-film solar cells' Prog. Photovolt: Res. Appl., 7, 311 (1999).
  17. K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward and A. Duda, 'Properties of 19.2% efficiency $ZnO/CdS/CuInGaSe_2$ thin-film solar cells' Prog. Photovolt: Res. Appl., 11, 225 (2003). https://doi.org/10.1002/pip.494
  18. K. Kushiya, 'Progress in large-area Cu(InGa)Se2-based thin-film modules with the efficiency of over 13 %', Proceedings of the 3rd world conference on photovoltaic energy conversion, Osaka, Japan, May 11-18, 2003.
  19. F. H. Karg, 'Development and manufacturing of CIS thin film solar modules' Sol. Energy Mater. Sol. Cells, 66, 645 (2001). https://doi.org/10.1016/S0927-0248(00)00256-7
  20. M. Turcu and U. Rau, 'Compositional trends of defect energies, band alignments, and recombination mechanisms in the Cu(In,Ga)(Se,S)2 alloy system' Thin Solid Films, 431-432, 158 (2003). https://doi.org/10.1016/S0040-6090(03)00225-6
  21. W. K. Metzger, I. L. Repins, M. Romero, P. Dippo, M. Contreras, R. Noufi and D. Levi, Recombination kinetics and stability in polycrystalline $Cu(In,Ga)Se_2$ solar cells, Thin Solid Films, 517, 2360 (2009). https://doi.org/10.1016/j.tsf.2008.11.050
  22. J. F. Guillemoles, L. Kronik, D. Cahen, U. Rau, A. Jasenek and H. W. Schock, 'Stability issues of $Cu(In,Ga)Se_2$-based solar cells' J. Phys. Chem. B, 104, 4849 (2000). https://doi.org/10.1021/jp993143k
  23. S. Shirakata, K. Ohkubo, Y. Ishii and T. Nakada, 'Effects of CdS buffer layers on photoluminescence properties of $Cu(In,Ga)Se_2$ solar cells' Sol. Energy Mater. Sol. Cells, 93, 988 (2009). https://doi.org/10.1016/j.solmat.2008.11.043
  24. N. B. Chaure, A. P. Samantilleke, R. P. Burton, J. Young and I. M. Dharmadasa, 'Electrodeposition of p+, p, i, n and n+ type copper indium gallium diselenide for development of multilayer thin film solar cells' Thin Solid Films, 472, 212 (2005). https://doi.org/10.1016/j.tsf.2004.07.051
  25. S. Khelifi, A. Belghachi, J. Lauwaert, K. Decock, J. Wienke, R. Caballero, C. A. Kaufmann and M. Burgelman, 'Characterization of flexible thin film CIGS solar cells grown on different metallic foil substrates' Energy Procedia, 2, 109 (2010). https://doi.org/10.1016/j.egypro.2010.07.017
  26. S. Niki, M. Contreras, I. Repins, M. Powall, K. Kushiya, S. Ishizuka and K. Matsubara, 'CIGS absorbers and processes', Prog. Photovolt: Res. Appl., 18, 453 (2010). https://doi.org/10.1002/pip.969
  27. M. B. Ard, K. Granath and L. Stolt, 'Growth of $Cu(In,Ga)Se_2$ thin films by coevaporation using alkali precursors' Thin Solid Films, 361-362, 9 (2000). https://doi.org/10.1016/S0040-6090(99)00828-7
  28. C. D. R. Ludwig, T. Gruhn, F. Claudia, S. Tanja, W. Johannes and K. Peter, 'Indium-gallium segregation in $CuIn_xGa_{1−x}Se_2$: an ab initio-based Monte Carlo study' Phys. Rev. Lett., 105, 025702/1-4 (2010).
  29. S. H. Wei, S. B. Zhang and A. Zunger, 'The effects of Ga addition to $CuInSe_2$ on its electronic, structural, and defect properties' Appl. Phys. Lett., 72, 3199 (1998). https://doi.org/10.1063/1.121548
  30. J. Werner, J. Mattheis and U. Rau, 'Efficiency limitations of polycrystalline thin film solar cells: case of $Cu(InGa)Se_2$' Thin Solid Films, 480, 399 (2005). https://doi.org/10.1016/j.tsf.2004.11.052
  31. L. Gütay and G. Bauer, 'Spectrally resolved photoluminescence studies on $Cu(InGa)Se_2$ solar cells with lateral submicron resolution' Thin Solid Films, 515, 6212 (2007). https://doi.org/10.1016/j.tsf.2006.12.164
  32. M. A. Arturo, 'A simple model of graded band-gap $CuInGaSe_2$ solar cells' Energy Procedia, 2, 169 (2010). https://doi.org/10.1016/j.egypro.2010.07.024
  33. S. Seyrling, S. Calnan, S. Bücheler, J. Hüpkes, S. Wenger, D. Brémaud, H. Zogg and A. N. Tiwari, '$Cu(In,Ga)Se_2$ photovoltaic devices for tandem solar cell application' Thin Solid Films, 517, 2411 (2009). https://doi.org/10.1016/j.tsf.2008.11.038
  34. O. Savadogo, 'Chemically and electrochemically deposited thin films for solar energy materials' Sol. Energy Mater. Sol. Cells, 52, 361 (1998). https://doi.org/10.1016/S0927-0248(97)00247-X
  35. R. W. Birkmire and E. Eser, 'Polycrystalline thin film solar cells: present status and future potential' Annu. Rev. Mater. Sci., 27, 625 (1997). https://doi.org/10.1146/annurev.matsci.27.1.625
  36. J. W. Dini, "Electrodeposition- The materials science of coatings and substrates", Noyes Publications, New York, USA (1992).
  37. S. M. Lee, Y. H. Kim, M. K. Oh, S. I. Hong, H. J. Ko and C. W. Lee, 'Electrodeposition of $Cu(In_xGa_{(1x)})Se_2 $ thin film', J. Korea Electrochem. Soc., 13, 89 (2010). https://doi.org/10.5229/JKES.2010.13.2.089
  38. M. E. Calixto, K. D. Dobson, B. E. McCandless and R. W. Birkmire, 'Controlling growth chemistry and morphology of single bath electrodeposited $Cu(In,Ga)Se_2$ thin films for photovoltaic application' J. Electrochem. Soc., 153, G521 (2006). https://doi.org/10.1149/1.2186764
  39. J. Zank, M. Mehlin and H. P. Fritz, 'Electrochemical codeposition of indium and gallium for chalcopyrite solar cells' Thin Solid Films, 286, 259 (1996). https://doi.org/10.1016/S0040-6090(95)08214-X
  40. R. Friedfeld, R. P. Raffaelle and J. G. Mantovani, 'Electrodeposition of $CuIn_xGa_{1x}Se_2$ thin films' Sol. Energy Mater. Sol. Cells, 58, 375 (1999). https://doi.org/10.1016/S0927-0248(99)00010-0
  41. A. M. Hermann, M. Mansour, V. Badri, B. Pinkhasov, C. Gonzales, F. Fickett, M. E. Calixto, P. J. Sebastian, C. H. Marshall and T. J. Gillespie, 'Deposition of smooth $Cu(In,Ga)Se_2$ films from binary multilayers' Thin Solid Films, 361-362, 74 (2000). https://doi.org/10.1016/S0040-6090(99)00848-2
  42. M. Kaelin, D. Rudmann and A. N. Tiwari, 'Low cost processing of CIGS thin film solar cells' Solar Energy, 77, 749 (2004). https://doi.org/10.1016/j.solener.2004.08.015
  43. D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx- Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen and O. Kerrec, 'Chalcopyrite thin film solar cells by electrodeposition' Solar Energy, 77, 725 (2004). https://doi.org/10.1016/j.solener.2004.05.024
  44. R. N. Bhattacharya, H. Wiesner, T. A. Berens, R. J. Matson, J. Keane, K. Ramanathan, A. Swartzlander, A. Mason and R. N. Noufi, '12.3% efficient $Culn_{1-x}Ga_xSe_2$-based device from electrodeposited precursor' J. Electrochem. Soc., 144, 1376 (1997). https://doi.org/10.1149/1.1837599
  45. R. N. Bhattacharya, W. Batchetor, H. Wiesner, F. Hasoon, J. E. Granata, K. Ramanathan, J. Alieman, J. Keane, A. Mason, R. J. Matson and R. N. Noufi, '14.1% $Culn_{1-x}Ga_xSe_2$-based photovoltaic cells from electrodeposited precursors' J. Electrochem. Soc., 145, 3435 (1998). https://doi.org/10.1149/1.1838823
  46. R. N. Bhattacharya, J. F. Hiltner, W. Batchelor, M. A. Contreras, R. N. Noufia and J. R. Sites, '15.4% $Culn_{10-x}Ga_xSe_2$-based photovoltaic cells from solution-based precursor films' Thin Solid Films, 361-362, 396 (2000). https://doi.org/10.1016/S0040-6090(99)00809-3
  47. R. N. Bhattacharya and A. M. Fernandez, '$Culn_{1-x}Ga_xSe_2$- based photovoltaic cells from electrodeposited precursor films' Sol. Energy Mater. Sol. Cells, 76, 331 (2003). https://doi.org/10.1016/S0927-0248(02)00285-4
  48. N. Guimard, J. Bodereau, J. Kurdi, J. F. Guillemoles, D. Lincot, P. P. Grand, M. BenFarrah, S. Taunier, O. Kerrec and P. Mogensen, 'Efficeicnt CIGS solar cells prepared by electrodeposition', Proceedings of the 3rd world conference on photovoltaic energy convention, Osaka, Japan, May 11-18, (2003).
  49. A. Kampmann, J. Rechid, A. Raitzig, S. Wulff, M. Mihhailova, R. Thyenm and K. Kalberlah, 'Electrodeposition of CIGS on metal substrates', Proceedings of the MRS 2003 Spring Meeting, San Francisco, USA.
  50. M. Ganchev, J. Kois, M. Kaelin, S. Bereznev, E. Tzvetkova, O. Volobujeva, N. Stratieva and A. Tiwari, 'Preparation of $Cu(In,Ga)Se_2$ layers by selenization of electrodeposited Cu-In-Ga precursors' Thin Solid Films, 511-512, 325 (2006). https://doi.org/10.1016/j.tsf.2005.11.076
  51. P. J. Dale, A. P. Samantilleke, G. Zoppi, I. Forbes, S. Roncallo and L. M. Peter, 'Deposition and characterization of copper chalcopyrite based solar cells using electrochemical techniques' ECS Transactions, 6, 535 (2007).
  52. R. N. Bhattacharya, W. Batchelor, J. F. Hiltner and J. R. Sites, 'Thin-film $CuIn_{1-x}Ga_xSe_2 $ photovoltaic cells from solution-based precursor layers' Appl. Phys. Lett., 75, 1431 (1999). https://doi.org/10.1063/1.124716
  53. Y. Lai, F. Liu, Z. Zhang, J. Liu, Y. Li, S. Kuang, J. Li and Y. Liu, 'Cyclic voltammetry study of electrodeposition of $Cu(In,Ga)Se_2$ thin films' Electrochim. Acta, 54, 3004 (2009). https://doi.org/10.1016/j.electacta.2008.12.016
  54. S. Aksu, J. Wang and B. M. Basol, 'Electrodeposition of In-Se and Ga-Se thin films for preparation of CIGS solar cells' Electrochem. Solid-State Lett., 12, D33 (2009). https://doi.org/10.1149/1.3079481
  55. T. Matsuoka, Y. Nagahori and S. Endo, 'Preparation and characterization of electrodeposited $CuGa_xIn_{1-x}Se_2 $ thin films' Jpn. J. Appl. Phys., 33, 6105 (1994). https://doi.org/10.1143/JJAP.33.6105
  56. D. Xia, J. Li, M. Xu and X. Zhao, 'Electrodeposited and selenized CIGS thin films for solar cells' J. Non Cryst. Solids, 354, 1447 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.02.097
  57. A. M. Fer´nadeza and R. N. Bhattacharya, 'Electrodeposition of $CuIn_{1-x}Ga_xSe_2 $ precursor films: optimization of film composition and morphology' Thin Solid Films, 474, 10 (2005). https://doi.org/10.1016/j.tsf.2004.02.104
  58. R. N. Bhattacharya, W. Batchelor, K. Ramanathan, M. A. Contreras and T. Moriarty, 'The performance of $CuIn_{1-x}Ga_xSe_2 $-based photovoltaic cells prepared from low-cost precursor films' Sol. Energy Mater. Sol. Cells, 63, 367 (2000). https://doi.org/10.1016/S0927-0248(00)00056-8
  59. J. Kois, M. Ganchev, M. Kaelin, S. Bereznev, E. Tzvetkova, O. Volobujeva, N. Stratieva and A.N. Tiwari, 'Electrodeposition of Cu-In-Ga thin metal films for $Cu(In,Ga)Se_2$ based solar cells' Thin Solid Films, 516, 5948 (2008). https://doi.org/10.1016/j.tsf.2007.10.080
  60. F. Kang, J. Ao, G. Sun, Q. He and Y. Sun, 'Properties of $CuInxGa_{1x}Se_2$ thin films grown from electrodeposited precursors with different levels of selenium content' Curr. Appl. Phys., 10, 886 (2010). https://doi.org/10.1016/j.cap.2009.10.015
  61. M. Engelmann, B. E. McCandless and R. W. Birkmire, 'Formation and analysis of graded $Cu(In(Se_{1-y}S_y)_2$' Thin Solid Films, 387, 14 (2001). https://doi.org/10.1016/S0040-6090(00)01732-6
  62. I. Dirnstorfer, W. Burkhardt, W. Kriegseis, I. Österreicher, H. Alves, D. M. Hofmann, O. Ka, A. Polity, B. K. Meyer and D. Braunger, 'Annealing studies on $CuIn(Ga)Se_2$: the influence of gallium' Thin Solid Films, 361-362, 400 (2000). https://doi.org/10.1016/S0040-6090(99)00810-X
  63. Y. P. Fu, R. W. You and K. K. Lew, '$CuIn_{1x}Ga_xSe_2$ absorber layer fabricated by pulse-reverse electrodeposition technique for thin film solar cell' J. Electrochem. Soc., 156, D553 (2009). https://doi.org/10.1149/1.3240330
  64. R. N. Bhattacharya, 'Electrodeposited two-layer Cu-In-Ga-Se/In-Se thin films' J. Electrochem. Soc., 157, D406 (2010). https://doi.org/10.1149/1.3427514
  65. D. D. Shivagan, P. J. Dale, A. P. Samantilleke and L. M. Peter, 'Electrodeposition of chalcopyrite films from ionic liquid electrolytes' Thin Solid Films, 515, 5899 (2007). https://doi.org/10.1016/j.tsf.2006.12.092
  66. R. Inguanta, P. Livreri, S. Piazza and C. Sunseri, 'Fabrication and photoelectrochemical behavior of ordered CIGS nanowire arrays for application in solar cells' Electrochem. Solid-State Lett., 13, K22 (2010). https://doi.org/10.1149/1.3274126
  67. J. E. Jaffe and A. Zunger, 'Theory of band gap anomaly in $ABC_2$ chalcopyrite semiconductors' Phys. Rev. B., 29, 1882 (1984). https://doi.org/10.1103/PhysRevB.29.1882
  68. K. Yoon, J. Song, S. Kim, J. Yun, S. Ahn and J. Lee, 'Development of CIS-based compound thin film solar cells', KIER-A62419, Korea Institute of Energy Research, 2006.
  69. S. R. Kodigala, 'Thin films and nanostructures- $Cu(In_{1-x}Ga_x)Se_2$ based thin film solar cells' Vol. 35, Academic Press, Elsevier, San Diego (2010).

Cited by

  1. Electrochemical Preparation of Indidum Sulfide Thin Film as a Buffer Layer of CIGS Solar Cell vol.14, pp.4, 2011, https://doi.org/10.5229/JKES.2011.14.4.225
  2. An efficient double junction CIGS solar cell using a 4H-SiC nano layer vol.127, pp.20, 2016, https://doi.org/10.1016/j.ijleo.2016.06.035
  3. The Research and Development of the Third Generation of Photovoltaic Modules vol.1538, 2013, https://doi.org/10.1557/opl.2013.683
  4. Tailoring the electronic and elastic properties by varying the composition of the CuGa1−xAlxS2chalcopyrite semiconductor vol.46, pp.28, 2013, https://doi.org/10.1088/0022-3727/46/28/285304
  5. Structural, Electronic, and Optical Features of CuAl(S1–xSex)2 Solar Cell Materials vol.53, pp.5, 2014, https://doi.org/10.1021/ic403030w
  6. Electrochemical Atomic Layer Deposition of CuIn (1-x) Ga x Se 2 on Mo Substrate vol.164, pp.14, 2017, https://doi.org/10.1149/2.1231714jes
  7. Electrochemical behaviors of Indium vol.3, pp.1, 2012, https://doi.org/10.5229/JECST.2012.3.1.1
  8. Buffer layer selection for CuIn1 −xGaxSe2based thin film solar cells vol.1, pp.1, 2014, https://doi.org/10.1088/2053-1591/1/1/016202
  9. Controllable Growth of Ga Film Electrodeposited from Aqueous Solution and Cu(In,Ga)Se2 Solar Cells vol.9, pp.22, 2017, https://doi.org/10.1021/acsami.7b01388
  10. Electrodeposition of CuIn1−xGaxSe2 solar cells with a periodically-textured surface for efficient light collection vol.16, pp.6, 2013, https://doi.org/10.1016/j.mssp.2013.05.007
  11. Electrochemically Fabricated Alloys and Semiconductors Containing Indium vol.3, pp.3, 2012, https://doi.org/10.5229/JECST.2012.3.3.95
  12. Synthesis of in-gap band CuGaS 2 :Cr absorbers and numerical assessment of their performance in solar cells 2018, https://doi.org/10.1016/j.solmat.2017.06.062
  13. Progress in electrodeposited absorber layer for CuIn(1−x)GaxSe2 (CIGS) solar cells vol.85, pp.11, 2011, https://doi.org/10.1016/j.solener.2011.08.003
  14. Electrodeposition of CuGaSe2 and CuGaS2 thin films for photovoltaic applications vol.20, pp.8, 2016, https://doi.org/10.1007/s10008-016-3237-0
  15. ) Films vol.162, pp.7, 2015, https://doi.org/10.1149/2.0431507jes