• Title/Summary/Keyword: elastic tube

Search Result 216, Processing Time 0.026 seconds

Estimation of Flow-induced Vibration Characteristics on Plugged Steam Generator Tube (관막음된 증기발생기 전열관의 유체유발진동 특성 평가)

  • Cho, Bong-Ho;Ryu, Ki-Wahn;Park, Chi-Yong;Park, Su-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.390.1-390
    • /
    • 2002
  • In this study, we investigate the plugging effect on the CE type steam generator tube. The natural frequency and mode shape will be changed due to decrease of the effective mass distribution along the tube. We compared the variation of stability ratio for plugged tube with that fur unplugged one. The natural frequency increased because of removing the cooling water inside the steam generator tube, but the stability ratio decreased inversely because of changing the vibrational mode shape. We also investigated the turbulent excitation effect.

  • PDF

EFFECTS OF SUPPORT STRUCTURE CHANGES ON FLOW-INDUCED VIBRATION CHARACTERISTICS OF STEAM GENERATOR TUBES

  • Ryu, Ki-Wahn;Park, Chi-Yong;Rhee, Hui-Nam
    • Nuclear Engineering and Technology
    • /
    • v.42 no.1
    • /
    • pp.97-108
    • /
    • 2010
  • Fluid-elastic instability and turbulence-induced vibration of steam generator U-tubes of a nuclear power plant are studied numerically to investigate the effect of design changes of support structures in the upper region of the tubes. Two steam generator models, Model A and Model B, are considered in this study. The main design features of both models are identical except for the conditions of vertical and horizontal support bars. The location and number of vertical and horizontal support bars at the middle of the U-bend region in Model A differs from that of Model B. The stability ratio and the amplitude of turbulence-induced vibration are calculated by a computer program based on the ASME code. The mode shape with a large modal displacement at the upper region of the U-tube is the key parameter related to the fretting wear between the tube and its support structures, such as vertical, horizontal, and diagonal support bars. Therefore, the location and the number of vertical and horizontal support bars have a great influence on the fretting wear mechanism. The variation in the stability ratios for each vibrational mode is compared with respect to Model A and Model B. Even though both models satisfy the design criteria, Model A shows substantial improvements over Model B, particularly in terms of having greater amplitude margins in the turbulence-excited vibration (especially at the inner region of the tube bundle) and better stability ratios for the fluid-elastic instability.

Effects of Gap between Tube and Support Plate on the Steam Generator Tube Wear (증기발생기 세관과 지지대 간극이 세관 마모에 미치는 영향)

  • Park, Chi-Yong;Lee, Yong-Son;Boo, Myung-Hwan;Kim, Tae-Ryong;Kim, Tae-Soon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.302-307
    • /
    • 2004
  • The major flow-induced vibration mechanisms such as fluid-elastic and turbulence excitation can cause the various types of wear of the steam generator tubes in unclear power plant. It is generally accepted that the tube wear due to vibration is affected by the presence of gap clearance between tube and support plate. Connors showed that the tube wear depth could be estimated by using the relationship between wear volume and sliding distance for contact time. Au-Yang predicted the wear depth by using the nonlinear characteristics of normal work rate to contact time. In this study the effect of gap size on the steam generator tubes wear is analyzed by deriving the wear depth versus normal work rate relationship from these previous results.

  • PDF

Estimation of Flow-induced Vibration characteristics on Plugged Steam Generator (관막음된 증기발생기 전열관의 유체유발진동 특성 평가)

  • Cho, Bong-Ho;Ryu, Ki-Wahn;Park, Chi-Yong;Park, Su-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.921-926
    • /
    • 2002
  • In this study, we investigate the plugging effect on the CE type steam generator tube. The natural frequency and mode shape will be changed due to decrease of the effective mass distribution along the tube. We compared the variation of stability ratio for plugged tube with that for unplugged one. The natural frequency increased because of removing the cooling water inside the steam generator tube, but the stability ratio decreased inversely because of changing the vibrational model shape. We also investigated the turbulent excitation effect.

  • PDF

Assessment of Equivalent Elastic Modulus of Perforated Spherical Plates

  • JUMA, Collins;NAMGUNG, Ihn
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.8-17
    • /
    • 2019
  • Perforated plates are used for the steam generator tube-sheet and the Reactor Vessel Closure Head in the Nuclear Power Plant. The ASME code, Section III Appendix A-8000, addresses the analysis of perforated plates, however, this analysis is only limited to the flat plate with a triangular perforation pattern. Based on the concept of the effective elastic constants, simulation of flat and spherical perforated plates and their equivalent solid plates were carried out using Finite Element Analysis (FEA). The isotropic material properties of the perforated plate were replaced with anisotropic material properties of the equivalent solid plate and subjected to the same loading conditions. The generated curves of effective elastic constants vs ligament efficiency for the flat perforated plate were in agreement with the design curve provided by ASME code. With this result, a plate with spherical curvature having perforations can be conveniently analyzed with equivalent elastic modulus and equivalent Poisson's ratio.

Analytic springback prediction in cylindrical tube bending for helical tube steam generator

  • Ahn, Kwanghyun;Lee, Kang-Heon;Lee, Jae-Seon;Won, Chanhee;Yoon, Jonghun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2100-2106
    • /
    • 2020
  • This paper newly proposes an efficient analytic springback prediction method to predict the final dimensions of bent cylindrical tubes for a helical tube steam generator in a small modular reactor. Three-dimensional bending procedure is treated as a two-dimensional in-plane bending procedure by integrating the Euler beam theory. To enhance the accuracy of the springback prediction, mathematical representations of flow stress and elastic modulus for unloading are systematically integrated into the analytic prediction model. This technique not only precisely predicts the final dimensions of the bent helical tube after a springback, but also effectively predicts the various target radii. Numerical validations were performed for five different radii of helical tube bending by comparing the final radius after a springback.

Extrusion process Analysis and Evaluation of Mechanical property for Micro Multi Cell Tube with 4 hole (4 홀 Micro Multi Cell Tube 의 압출공정 해석 및 기계적 특성 평가)

  • 이정민;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.397-400
    • /
    • 2004
  • The direct extrusion with porthole die can produce condenser tube which has the competitive power in costs and qualities compared with the existing conform extrusion. In general, porthole die extrusion has a great advantage in the forming that produces the hollow sections difficult to produce by conventional extrusion with a mandrel on the stem. Especially, condenser tube manufactured by porthole die belongs to sophisticated part and demands tighter dimension tolerance and higher surface finish than any other part. In order to confirm the general of porthole die extrusion, we perform the 3D FE analysis of hot porthole extrusion in non-steady state by using DEFORM 3D and investigate a pattern of elastic deformation for porthole die through the stress analysis using ANSYS 5.5 during extrusion process.

  • PDF

Study on the Plastic Buckling of Thin Rectangular Tubes under Compression (압축하중을 받는 박판 4각튜브의 소성좌굴 연구)

  • Kim, C.W.;Han, B.K.;Kim, J.M.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.357-362
    • /
    • 2000
  • In the present paper the plastic buckling of thin-walled rectangular tube is analyzed. The stress-strain relations of the plates of the tube are idealized into nonlinear material of Ramberg and Osgood. Computing elastic moduli of the nonlinear material a precise plastic buckling stress has determined. The plastic buckling stress of the wider plate of the tube is considered as the crippling strength of the tube. The present theory is in good agreement with the experiments in various thickness-width ratios and materials.

  • PDF

Orthotropic Beam Analogy for Analysis of Shear Stresses in Framed-Tube Structures (구형등가보 원리에 의한 튜브 구조물의 전단응력 해석)

  • 이강건;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.393-400
    • /
    • 2001
  • A simple numerical modelling technique is proposed for estimating the shear stress distribution in beams of framed tube structures with multiple internal tubes. The structures are analysed using a continuum approach in which each tube is individually modelled by a tube beam that accounts for the flexural and shear deformations, as well as the shear lag effects. The method idealises the discrete tubes-in-tube structures as an assemblage of equivalent multiple beams, each composed of orthotropic plate panels. The numerical analysis of shear stress is based on the elastic theory in conjunction with the minimum potential energy principle. By simplifying assumptions regarding the form of strain distributions in external and internal tubes, the shear stress distributions are expressed in terms of a series of linear functions of the second moments of area of the structures and the corresponding geometric and material properties, as well as the applied loads. The simplicity and accuracy of the proposed method are demonstrated through the solutions of three numerical examples.

  • PDF

Development of Creep Deflection Analysis Method and Program for CANDU Pressure Tube (중수로 압력관의 크리프 처짐 해석 기법 및 프로그램 개발)

  • Shim, Do-Jun;Huh, Nam-Su;Park, Bo-Kyu;Chang, Yoon-Suk;Kim, Yun-Jae;Kim, Young-Jin;Jung, Hyun-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.66-71
    • /
    • 2004
  • Estimation of the CANDU pressure tube deflection is important since the deflection may cause significant structural failure due to hydrogen diffusion and blister. However, there is no appropriate engineering model to estimate it exactly. The purpose of this paper is to propose a new analysis method and program to resolve this issue. For development of proper analysis method, a series of finite element analyses has been carried under elastic-creep condition. In addition, for effective estimation of the creep deflection, an analysis program named PC-DAS was developed based on the proposed method. Comparison of simple case study results with corresponding reference ones showed good agreement. Therefore, the proposed method and program can be utilized as one of valuable toolkit for integrity assessment of CANDU pressure tube.

  • PDF