• 제목/요약/키워드: elastic constraint

검색결과 126건 처리시간 0.023초

領域適應法을 利용한 彈性體 形狀의 最適設計 (Shape optimal design of elastic structures by the domain adaptive method)

  • 정균양
    • 대한기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.234-242
    • /
    • 1987
  • 본 논문에서는 변분법으로 유도한 최적조건을 수치계산에 적용키 위해 영역적 응법이 사용되었으며 불규칙한 형상의 방지에는 격자 적응법이 제시되었다. 설계 문 제로는 '국부 응력치의 일정 한도내에서 구조물 무게의 최소화' 또는 대등한 문제로 '제한된 구조물의 무게한도내에서 최대 국부응력치의 최소화'를 다루었다.

Stiffness Analysis of a Low-DOF Parallel Manipulator including the Elastic Deformations of Both Joints and Links (ICCAS 2005)

  • Kim, Han-Sung;Shin, Chang-Rok;Kyung, Jin-Ho;Ha, Young-Ho;Yu, Han-Sik;Shim, Poong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.631-637
    • /
    • 2005
  • This paper presents a stiffness analysis method for a low-DOF parallel manipulator, which takes into account of elastic deformations of joints and links. A low-DOF parallel manipulator is defined as a spatial parallel manipulator which has less than six degrees of freedom. Differently from the case of a 6-DOF parallel manipulator, the serial chains in a low-DOF parallel manipulator are subject to constraint forces as well as actuation forces. The reaction forces due to actuations and constraints in each limb can be determined by making use of the theory of reciprocal screws. It is shown that the stiffness model of an F-DOF parallel manipulator consists of F springs related to the reciprocal screws of actuations and 6-F springs related to the reciprocal screws of constraints, which connect the moving platform to the fixed base in parallel. The $6{times}6$ stiffness matrix is derived, which is the sum of the stiffness matrices of actuations and constraints. The six spring constants can be precisely determined by modeling the compliance of joints and links in a serial chain as follows; the link can be considered as an Euler beam and the stiffness matrix of rotational or prismatic joint can be modeled as a $6{times}6$ diagonal matrix, where one diagonal element about the rotation axis or along the sliding direction is zero. By summing the elastic deformations in joints and links, the compliance matrix of a serial chain is obtained. Finally, applying the reciprocal screws to the compliance matrix of a serial chain, the compliance values of springs can be determined. As an example of explaining the procedure, the stiffness of the Tricept parallel manipulator has been analyzed.

  • PDF

Multipath Routing and Spectrum Allocation for Network Coding Enabled Elastic Optical Networks

  • Wang, Xin;Gu, Rentao;Ji, Yuefeng
    • Current Optics and Photonics
    • /
    • 제1권5호
    • /
    • pp.456-467
    • /
    • 2017
  • The benefits of network coding in all-optical multicast networks have been widely demonstrated. In this paper, we mainly discuss the multicast service efficiently provisioning problem in the network coding enabled elastic optical networks (EONs). Although most research on routing and spectrum allocation (RSA) has been widely studied in the elastic optical networks (EONs), rare research studies RSA for multicast in the network coding enabled EON, especially considering the time delay constraint. We propose an efficient heuristic algorithm, called Network Coding based Multicast Capable-Multipath Routing and Spectrum Allocation (NCMC-MRSA) to solve the multipath RSA for multicast services in the network coding enabled EON. The well-known layered graph approach is utilized for NCMC-MRSA, and two request ordering strategies are utilized for multiple multicast requests. From the simulation results, we observe that the proposed algorithm NCMC-MRSA performs more efficient spectrum utilization compared with the benchmark algorithms. NCMC-MRSA utilizing the spectrum request balancing (SRB) ordering strategy shows the most efficient spectrum utilization performance among other algorithms in most test networks. Note that we also observe that the efficiency of NCMC-MRSA shows more obvious than the benchmark algorithm in large networks. We also conduct the performance comparisons of two request ordering strategies for NCMC-MRSA. Besides, we also evaluate the impact of the number of the linkdisjoint parallel w paths on the spectrum utilization performance of the proposed algorithm NCMC-MRSA. It is interesting to find that the change of the parameter w in a certain range has a significant impact on the performance of NCMC-MRSA. As the parameter w increases to a certain value, the performances of NCMC-MRSA cannot be affected by the change of w any more.

Buckling of cylindrical shells with internal ring supports

  • Wang, C.M.;Tian, J.;Swaddiwudhipong, S.
    • Structural Engineering and Mechanics
    • /
    • 제2권4호
    • /
    • pp.369-381
    • /
    • 1994
  • This paper is concerned with the elastic buckling of cylindrical shells with internal rigid ring supports. The internal supports impose a zero lateral deflection constraint on the buckling modes at their locations. An automated Rayleigh-Ritz method is presented for solving this buckling problem. The method can handle any combination of end conditions and any number of internal supports. Moreover, it is simple to code and can yield very accurate solutions. New buckling results for cylindrical shells with a single internal ring support, and under lateral pressure and hydrostatic pressure, are given in the form of design charts. These results should be valuable to engineering designers.

Validation of Efficient Welding Technique to Reduce Welding Displacements of Ships using the Elastic Finite Element Method

  • Woo, Donghan
    • 해양환경안전학회지
    • /
    • 제26권3호
    • /
    • pp.254-261
    • /
    • 2020
  • Welding is the most convenient method for fabricating steel materials to build ships and of shore structures. However, welding using high heat processes inevitably produces welding displacements on welded structures. To mitigate these, heavy industries introduce various welding techniques such as back-step welding and skip-step welding. These techniques effect on the change of the distribution of high heat on welded structures, leading to a reduction of welding displacements. In the present study, various cases using different and newly introduced welding techniques are numerically simulated to ascertain the most efficient technique to minimize welding displacements. A numerical simulation using a finite element method based on the inherent strain, interface element and multi-point constraint function is introduced herein. Based on several simulation results, the optimal welding technique for minimizing welding displacements to build a general ship grillage structure is finally proposed.

고무패드 변형의 3차원 유한요소해석 (Three-dimensional Finite Element Analysis of Rubber Pad Deformation)

  • 신수정;이태수;오수익
    • 대한기계학회논문집A
    • /
    • 제22권1호
    • /
    • pp.121-131
    • /
    • 1998
  • This paper applies the FE analysis procedure, developed in the Part I of the companion article, to the three-dimensional rubber pad deformation during rubber-pad forming process. Effects of different algorithms corresponding to incompressibility constraint and time integration methods on numerical solution responses are investigated. Laboratory scale experiments support the validity of the developed FE procedure an demonstrate the accuracy of the numerical models. Full scale model responses are also predicted using the reasonable method and parameters obtained in laboratory modeling.

접수탱크구조의 진동특성에 관한 연구 (A Study on Vibration Characteristics in Water Tank Structure)

  • 배성용
    • 대한조선학회논문집
    • /
    • 제40권4호
    • /
    • pp.46-52
    • /
    • 2003
  • In ship structures, many parts are in contact with inner or outer fluid as stern, ballast and oil tanks. Fatigue damages can be sometimes observed in these tanks which seem to be caused by resonance. Tank structures in ships are in contact with water and the vibration characteristics are strongly affected by the added mass of containing water. Therefore it is important to predict vibration characteristics of tank structures. In order to estimate the vibration characteristics, the fluid-structure interaction problem has to be solved precisely. In the present paper, we have developed a numerical tool of vibration analysis of 3-dimensional tank structures using finite elements for plates and boundary elements for water region. To verify the present analysis, we have made an experiment for vibration characteristics of a tank with elastic opposite panels. And the added mass effect of containing water and the effect of structural constraint between panels are investigated numerically and discussed.

ELASTOKINEMATIC ANALYSIS OF A SUSPENSION SYSTEM WITH LINEAR RECURSIVE FORMULA

  • KANG J. S.
    • International Journal of Automotive Technology
    • /
    • 제6권4호
    • /
    • pp.375-381
    • /
    • 2005
  • This paper presents linear algebraic equations in the form of recursive formula to compute elastokinematic characteristics of a suspension system. Conventional methods of elastokinematic analysis are based on nonlinear kinematic constrant equations and force equilibrium equations for constrained mechanical systems, which require complicated and time-consuming implicit computing methods to obtain the solution. The proposed linearized elastokinematic equations in the form of recursive formula are derived based on the assumption that the displacements of elastokinematic behavior of a constrained mechanical system under external forces are very small. The equations can be easily computerized in codes, and have the advantage of sharing the input data of existing general multi body dynamic analysis codes. The equations can be applied to any form of suspension once the type of kinematic joints and elastic components are identified. The validity of the method has been proved through the comparison of the results from established elastokinematic analysis software. Error estimation and analysis due to piecewise linear assumption are also discussed.

Effect of Geometrical Discontinuity on Ductile Fracture Initiation Behavior under Static Leading

  • An, G.B.;Ohata, M.;Toyoda, M.
    • International Journal of Korean Welding Society
    • /
    • 제3권1호
    • /
    • pp.51-56
    • /
    • 2003
  • It is important to evaluate the fracture initiation behaviors of steel structure. It has been well known that the ductile cracking of steel would be accelerated by triaxial stress state. Recently, the characteristics of critical crack initiation of steels are quantitatively estimated using the two-parameters, that is, equivalent plastic strain and stress triaxiality, criterion. This study is paid to the fundamental clarification of the effect of notch radius, which can elevate plastic constraint due to heterogeneous plastic straining on critical condition to initiate ductile crack using two-parameters. Hense, the crack initiation testing were conducted under static loading using round bar specimens with circumferential notch. To evaluate the stress/strain state in the specimens was used thermal elastic-plastic FE-analysis. The result showed that equivalent plastic strain to initiate ductile crack expressed as a function of stress triaxiality obtained from the homogeneous specimens with circumferential notched under static loading. And it was evaluated that by using this two-parameters criterion, the critical crack initiation of homogeneous specimens under static loading.

  • PDF

퍼지기법을 이용한 다중 센서 데이타 Fusion (Multisensor Data Fusion Using Fuzzy Techniques)

  • 김완주;고중협;정명진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.781-786
    • /
    • 1991
  • This paper introduces a new methodology for multisensor data fusion. The method makes use of fuzzy techniques and possibility distribution as a fuzzy restriction which acts as an elastic constraint on the values that may be assigned to a variable. We propose a simple sensor fuzzy modeling method which can be used for cluster validity analysis. As a result, the feasibility of these multisensor data fusion modules is demonstrated by computer simulation applicable to the problem of object identification.

  • PDF