DOI QR코드

DOI QR Code

Buckling of cylindrical shells with internal ring supports

  • Wang, C.M. (Department of Civil Engineering, National University of Singapore) ;
  • Tian, J. (Department of Civil Engineering, National University of Singapore) ;
  • Swaddiwudhipong, S. (Department of Civil Engineering, National University of Singapore)
  • Published : 1994.12.25

Abstract

This paper is concerned with the elastic buckling of cylindrical shells with internal rigid ring supports. The internal supports impose a zero lateral deflection constraint on the buckling modes at their locations. An automated Rayleigh-Ritz method is presented for solving this buckling problem. The method can handle any combination of end conditions and any number of internal supports. Moreover, it is simple to code and can yield very accurate solutions. New buckling results for cylindrical shells with a single internal ring support, and under lateral pressure and hydrostatic pressure, are given in the form of design charts. These results should be valuable to engineering designers.

Keywords

References

  1. Armenakas, A.E. and Herrmann, G. (1963), "Buckling of thin shells under external pressure", Proc. ASCE, 89(EM3), 131-146.
  2. Baruch, M. and Singer, J. (1963), "Effect of eccentricity of stiffeners on the general instability of stiffened cylindrical shells under hydrostatic pressure", J. Mech. Eng. Sci., 5(1), 23-27. https://doi.org/10.1243/JMES_JOUR_1963_005_005_02
  3. Batdorf, S.B. (1947), "A simplified method of elastic stability analysis for thin cylindrical shells", NACA Tech. Rep., 874.
  4. Bodner, S.R. (1957), General instability of a ring stiffened circular cylindrical shell under hydrostatic pressure, J. Appl. Mech. (ASME), 24(2), pp.269-277.
  5. Donnell, L.H. (1934), "A new theory for the buckling of thin cylinders under axial compression and bending", Trans. ASME, 56, 795-806.
  6. Ellinas, C.P. and Croll, J.G.A. (1981), "Overall buckling of ring stiffened cylinders", Proc. Instn. Civ. Engrs., Part 2, 71, 637-661. https://doi.org/10.1680/iicep.1981.1811
  7. Galletly, G. D. and Bart, R. (1956), "Effects of boundary conditions and initial out-of-roundness on the strength of thin-walled cylinders subject to external hydrostatic pressure", J. Appl. Mech., 23, 351-358.
  8. Ho, B.P.C. and Cheng, S. (1963), "Some problems in stability of heterogeneous aeolotropic cylindrical shells under combined loading", AIAA J., 1, 1603-1607. https://doi.org/10.2514/3.1864
  9. Kendrick, S. (1970), The Stress Analysis of Pressure Vessels and Pressure Vessel Components,(ed. S.S. Gill), Pergamon, 405.
  10. Lorenz, R. (1908), "Achsensymmetrische Verzerrungen in dunnwandigen Hohlzylindern", Zeitschrift des Vereines Deutscher Ingenieure, 52(43), 1706-1713 (in German).
  11. Love, A. E. H. (1944), A Treatise on the Mathematical Theory of Elasticity, Dover Publications, New York.
  12. Markus, S. (1988), The Mechanics of Vibrations of Cylindrical Shells, Elsevier, Amsterdam.
  13. Nash, W.A. (1953), "Buckling of multiple-bay ring-reinforced cylindrical shells subject to hydrostatic pressure", J. Appl. Mech., 20(4), 469-474.
  14. Nash, W.A. (1954), "Buckling of thin cylindrical shells subject to hydrostatic pressure", J. Aeron. Sci., 21, 354-355. https://doi.org/10.2514/8.3028
  15. Salerno, V.L. and Levine, B. (1950), "Buckling of circular cylindrical shells with evenly spaced, equal strength circular ring frames I & II", Polytechnic Institute of Brooklyn, Reports 167, 169.
  16. Salerno, V.L. and Levine, B. (1951), "The determination of the hydrostatic pressures for circular cylindrical shells reinforced with rings", Polytechnic Institute of Brooklyn, Report 182.
  17. Sanders, J. L. (1959), "An improved first-approximation theory for thin shells", NASA TR R-24.
  18. Schnell, W. (1965), "Einfluss der randverwolbung auf die beulwerte von zylinderschalen unter manteldruck", Der Stahlbau, 34, 187-190.
  19. Sobel, L. H. (1964), "Effects of boundary conditions on the stability of cylinders subject to lateral and axial pressures", AIAA J., 2, 1437-1440. https://doi.org/10.2514/3.2572
  20. Soong, T.C. (1967), "Buckling of cylindrical shell under pressure using Sanders theory", AIAA J., 5, 1049-1052. https://doi.org/10.2514/3.4135
  21. Thielemann, W. and Esslinger, M. (1964), "Einfluss der randbedingungen auf die beullast von kreiszlinderschalen", Der Stahlbau, 33, 353-360.
  22. Timoshenko, S. (1910), "Einige stabilitatsprobleme der elastizitatstheorie", Zeitschrift fur angew. Math. und Phys. (ZAMP), 58(4), 337-385 (in German).
  23. Timoshenko, S. P. and Gere, J. M. (1961), Theory of Elastic Stability, McGraw Hill, New York.
  24. Von Mises, R. (1914), "Der kritische aussendruck zylindrischer rohre", Z. VDI, 58, 750-755.
  25. Von Mises, R. (1929), "Der kritische aussendruck fur allseits belastete zylindrische rohre", Stodola-Festschrift, Zurich. 418-432.
  26. Wang, Y.G. and Zeng, G.W. (1983), "Calculation of critical pressure of ring stiffened cylindrical shells through function minimization", China Ship Building, 4, 29-38 (in Chinese).
  27. Yamaki, N. (1969/1969), "Buckling of circular shells under external pressure", Report 196, Institute of High Speed Mechanics, Tohoku University, Japan.

Cited by

  1. Ritz Method for Vibration Analysis of Cylindrical Shells with Ring Stiffeners vol.123, pp.2, 1997, https://doi.org/10.1061/(ASCE)0733-9399(1997)123:2(134)
  2. Buckling Analysis of Thin Walled Cylinder with Combination of Large and Small Stiffening Rings under External Pressure vol.130, 2015, https://doi.org/10.1016/j.proeng.2015.12.229
  3. Buckling of Vertical Cylindrical Shells Under Combined End Pressure and Body Force vol.129, pp.8, 2003, https://doi.org/10.1061/(ASCE)0733-9399(2003)129:8(876)
  4. Elastic buckling analysis of ring-stiffened cylindrical shells under general pressure loading via the Ritz method vol.35, pp.1, 1999, https://doi.org/10.1016/S0263-8231(99)00012-9
  5. Buckling of intermediate ring supported cylindrical shells under axial compression vol.43, pp.3, 2005, https://doi.org/10.1016/j.tws.2004.07.019