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ABSTRACT-This paper presents linear algebraic equations in the form of recursive formula to compute elastokinematic
characteristics of a suspension system. Conventional methods of elastokinematic analysis are based on nonlinear
kinematic constrant equations and force equilibrium equations for constrained mechanical systems, which require
complicated and time-consuming implicit computing methods to obtain the solution. The proposed linearized
elastokinematic equations in the form of recursive formula are derived based on the assumption that the displacements of
elastokinematic behavior of a constrained mechanical system under external forces are very small. The equations can be
easily computerized in codes, and have the advantage of sharing the input data of existing general multibody dynamic
analysis codes. The equations can be applied to any form of suspension once the type of kinematic joints and elastic
components are identified. The validity of the method has been proved through the comparison of the results from
established elastokinematic anlaysis software. Error estimation and analysis due to piecewise linear assumption are also
discussed.
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1. INTRODUCTION

Suspension systems are composed of kinematic joints
and elastic components such as spring and rubber
bushings. The elastokinematic behavior of kinematic and
compliance components inherently causes change of
wheel attitude due to the forces applied to the tire, which
has significant effects on ride and handling characteri-
stics. Thus, when designing a suspension system, the
effects of elastokinematic characteristics should be
considered carefully in view of handling as well as ride
characteristics. Elastokinematic characteristics of suspen-
sion systems can be accounted for in the light of the
changes of static design factors such as toe angle, camber
angle and lateral displacement of the wheel due to the
forces and moments applied to the tire-road contact
patch, The effects of these characteristics on handling
were early investigated (Bundorf, 1976). The elastokine-
matic effects on ride and handling have been also taken
into consideration to design a suspension system (Tsukuda
et al., 1988).

Elastokinematic characteristics of a suspension system
can be measured through the suspension parameter
measuring device (SPMD) (Shimatani ef al., 1999; Ellis
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et al., 1987; Erdogan et al., 1999). Ride and handling
performance has been predicted with lumped parameter
vehicle model including kinematic and compliance
effects (Gorder et al., 2000; Kasprzak et al., 2000). In the
early developing stage of a suspension, there should be
an analytical means for calculating elastokinematic char-
acteristics. Recently, accurate computation of elastokine-
matic characteristics has been tried based on the dynamic
and algebraic equation neglecting time variant terms of
multibody dynamic areas. Orlandea and Chase proposed
a computational analysis in conjunction with the numeri-
cal method for general multibody systems, which was
implemented in ADAMS, a commercial multibody
dynamic analysis package (Orlandea et al, 1977). To
resolve the drawback that the solution process is sensitive
to the initial estimates of the solutions, the method of
minimizing the potential energy of the system has been
proposed (Wehage et al., 1982).

In this study, based on the assumption that the
displacements of multibody systems under the external
forces are very small, a linear form of the elastokinematic
equations in terms of infinitesimal displacements and
joint reaction forces is derived. Then, linear form of
recursive formula is suggested for elastokinematic analysis
of multibody systems in which the configuration is
changed due to continuous quasi-static forces under the
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piecewise linear assumption. The equations can be appli-
ed to any form of suspension once the types of kinematic
Jjoints and bushings are identified. In this paper, wheel
attitude changes with vertical movement are computed
for a McPherson strut suspension as an example. The
validity of the method has been proved through the
comparison of the results from the established elastokine-
matic analysis software ADAMS.

2. LINEARIZED ELASTOKINEMATIC
EQUATIONS

A constrained mechanical system is the interconnection
of rigid bodies by kinematic joints and compliance
elements such as bushings and springs. The governing
equations for a constrained mechanical system are com-
posed of two types of equations: algebraic kinematic
constraint equation and force equilibrium equation. The
kinematic constraint, which must be satisfied, can be
generally represented in algebraic equations as:

@(q) =0 M

where ¢ is the generalized coordinates of the system.

The external force acting on body i is the sum of all
forces such as elastic force and constraint reaction force
as shown in Figure 1.

ffxt — ffla:t + f;onsf (2)

In Equation (2), time variant terms such as inertia force
and damping force are neglected by the quasi-static
condition, which is assumed to obtain kinematic and
compliance characteristics of suspension system.

If the system has nb bodies, then the total external
force vector ' may be written as:

fexf — [foIT f;XIT. . ff.ZIT]T (3)

For the linearized elastokinematic equations, it is

Figure 1. Static force equilibrium.

original position

X

Figure 2. Displacement vector for a body.

assumed that the system undergoes very small dis-
placements from the equilibrium configuration by small
change of external forces. As shown in Figure 2, body i
has the displacement vector Aq, which consists of

translation  Ar, = [Ax; Ay; Az;]"  and  rotation
Am, = [Ab: AO, Ayl
Aq;=[Ar] Ar]) 4)

where represents Ax, Ay, Az direction displacement
respectively, and A¢;, AD,, Ay, is rotations about x, y and z
axis respectively. The total displacement vector Aq can
be given as follows:

Aq=[Aq] Aq:...Aqn)" (5)

To obtain the linearized equations for constrained
systems, constraint equations are firstly linearized in
terms of Ag. Under the action of the external forces, the
system reaches a new equilibrium. At the new equili-
brium, the generalized coordinates change from q to
q -+ Aq, then the constraint equation can be approxi-
mately written as:

®(q+ Aq) = D(q)+D,Aq=0 (6)

where @, is the Jacobian of the constraint equation ®.
Typical kinematic constraint equations and Jacobians are
summarized by Nikravesh (Nikravesh, 1988). From
Equations (1) and (6), constraint equations for small
displacement Aq can be given as:

®,Aq=0 ' (7)
For small displacements, elastic elements can be

regarded as linear translational and rotational springs. A
general form of the stiffness matrices of the elastic
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X

Figure 3. Displacement between two bodies.

element in a local coordinate system can be respectively
expressed as:

k' 0 0

K/=10 k" 0 (®)
10 0 k'
k' 0 0

K. =10 k' 0 ©®
10 0 &

The stiffness matrix in the local coordinate system can
be transformed into the stiffness matrix in the global
coordinate system by multiplying the transformation
matrix as follows:

K. = AK/ A’ (10)
Ki= AK AT (11)

where A, is the transformation matrix from the local
coordinate system to the global coordinate system.

Figure 3 shows body i and j, which respectively
undergoes small displacements Aq; and Aq,. Let the s, be
the position vector of the attachment point O;' of the
elastic element, displacement of the attachment point O,
can be expressed as:

Ar; = Ar,+Am;s; = Ar; — §;AT; (12)

Similarly, displacement of the attachment point O/
can be expressed as:

Ar,' = Ar;—§;Am; (13)

Force of the elastic element between O;' and O, can
be calculated by premultiplying the stiffness matrix K; to

the relative displacement Ar,” —Ar;":
F; = —K(Ar;— Ar;— §;Am; + §,Am;) (14)

where minus sign is taken to treat the tension of the
spring as the positive value. The moment about Q; is the
sum of moment due to force F; and pure moment by
rotational spring.

T; = sF~Kx(Am, - Amy) (15)

Force and moment exerted on body j can be similarly
expressed as:

F,=-F, (16)
T, = S F+Kz(Am,— An) 17y
Arranging Equations (14)-(17) into matrix form,

elastic forces and displacements relationship can be
written as:

fflast K K.j Aq
= ii i ‘ 18
{f;la”} [Kji Kj' Aq/ ( )
where elastic force vector is " = [F! T!]" and the

stiffness matrix of the elastic element between body / and
J is written as:

-K, K,§ LK, -K,§
K, K,| |-sK, SK,5-K, ! 5K, -5K/5 +K,
o ) I Bk B K,
IK, -§K,§5+K, -5K, §K.;§-K,
19)

It can be easily shown that stiffness matrix of Equation
(19) is symmetric, which is the general feature of linear
systems. Elastic forces of the whole system can be
constructed by subjoining the stiffness matrices for each
spring element.

fe[asz — KAq (20)

Constraint forces can be expressed in terms of the
constraint equations and Lagrange multipliers. Constraint
forces at the new configuration due to the external forces
are represented as:

£ = (q + Aq)}/ @

where ®(q +Aq), is the Jacobian at the new
configuration, and A is the Lagrange multipliers
associated with the constraint forces. In the virtue of
linear property with small motion it is assumed that
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Figure 4. Static force equilibrium at initial step.

O(q + Aq), = P(q),, then Equation (21) is expressed
as:

£~ B(q)IA (22)

Substituting Equations (20) and (22) into Equations (2)
and (3), linearized static equations for the constrained
system with small displacement are obtained as:

KAQ+®!A =™ 23)

Equations (1) and (23) can be combined to a matrix
form.

R
@, 0| 4 0

Linear elastokinematic equations for constrained
mechanical system have been achieved as Equation (24).
Once types of kinematic joints, elastic elements and
* external forces are defined, the displacements Aq and
constraint reaction forces 4 can be easily obtained by
linear algebraic matrix methods.

Based on the linear elstokinematic equations of
Equation (24), linear form of recursive formula is derived
for elastokinematic analysis of multibody systems in
which the configuration is changed due to continuous
quasi-static forces under the piecewise linear assumption.
For stepwise derivation, we consider the system as shown
in Figure 4, in which initial configuration q° is deflected
by the incremental force Af*". In Figure 4, elastic force
and constraint force of the system are denoted as
K(q®Aq® and ®(q");4° from Equations (20) and (22),
respectively. Equation (24) can be rewritten as:

0
K(¢) ©(q") {Aq} _ {Af”’} @)
(g, 0 U4 0
Solution of initial step, Aq° can be obtained from
Equation (25).

K(q")aq°
+K(q')Aq)

Figure 5. Static force equilibrium at second step.

K(g")Aq'
+K(q)Aq'
+...

+K(q")Aq

@(qn):xn

(n+DAF
Figure 6. Static force equilibrium at (n+1)th step.

Generalized coordinates of changed configuration of
the system are q' =q°+Aq’. In the second step, incre-
mental force 2Af*" is applied to the new configuration as
shown in Figure 5. Equation (24) can be rewritten as:

K(q) (¢ {Aq}l 3 {mf"‘—l((q")Aq"} 26
o(q), 0 JL4 0

Since Af*' - K(q")Aq’ = @(q°);A° from Equation
(25), Equation (26) is rewritten as:

K(¢) o), {Aq} :{Aff*‘}+{¢(q°)£z"} @
o(qh, 0 JLA 0 0

In the same manner, equation of (n+1)th step can be
derived as above procedure considering Figure 6. For the
incremental force (n+ 1)Af*™ of (n+1)th step, linear
elastokinematic equation of constrained system is written
as:

K(q") D) {Aq}" 28)
o(q), 0 JL4

_ {(n+ DAF“_K(q")Aq’-K(q)Aq'~.. .—K(q"")Aq""}
0
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Since »nAf-K(q")Aq"-K(q")Aq'-K(q")Aq'-...—
K(a')ag™" = @@ A"
Equation (28) is rewritten as:

K(4) ()] {Aq}" _ {Afe"}+{®<q"")§/1"“}
o), o J4 0 0

29

from previous step,

In the end, linear recursive formula of constrained
mechanical system is obtained as Equation (29). One can
notice that initial variable q’ means initial coordinates
and A is 0 from Equation (25). The system equation is
derived as simple and straightforward form easily used to
compute displacements of the system undergoing quasi-
static motion.

3. EXAMPLE

Suspension systems can be considered as interconnection
of rigid bodies by kinematic joints and elastic elements.
Thus, each component of the suspension system has
inherent motion characteristics when they are subject to
external forces.

A McPherson strut type suspension system is shown in
Figure 7, which consists of three rigid bodies of lower
control arm, wheel assembly, and strut. Wheel assembly
is connected to the strut with a linear one-axis spring
(K", and the strut is connected to the car body by a strut
mount rubber bushing with three-axis spring (K°). Also
lower control arm is connected to the car body with two
bushings (K’, K. A cylindrical constraint between
wheel assembly and strut, a distance constraint between
wheel assembly and car body, a spherical constraint

*

K

] car body
distance
constraint

Figure 7. Modeling of a McPherson strut suspension
system.
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Figure 8. Toe angle change vs wheel stroke.
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Figure 9. Camber angle change vs wheel stroke.

between lower control arm and wheel assembly, and an
in-plain constraint between wheel assembly and ground
are respectively imposed. There are 9 constraints, 4 for
cylindrical constraint, 1 for distance constraint, 3 for
spherical constraint and 1 for in-plain constraint. Since
the number of generalized coordinates is 18 and the
number of constraints is 9, there are 27 system variables.

Incremental force Af* = 10N is applied to the wheel
in vertical direction to compute quasi-static solution of a
suspension system. Step size is 600 and external forces
are varied from -3000N to 3000N that push the wheel
almost from —100 mm to 100 mm. Figure 8 shows toe
change curve due to the wheel stroke. Figure 9 shows
camber change curve due to the wheel stroke. Figure 10
shows lateral movement due to vertical movement of the
wheel. Results of piecewise linear approach of this paper
are very consistent to those of ADAMS. It can be shown
that the linear recursive formula presented in this paper
seems to well predict elastokinematic characteristics of a
suspension system.

The solution of piecewise linear approach is expected
to be sensitive to step size. Therefore, it needs to discuss
aspect of errors. Error norm can be defined as constrained
equations as:
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Figure 10. Lateral movement vs wheel stroke.
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Figure 11. Error vs step size.

err =|®(q) - 0(q")| (30)

Where, q is true solution and q" is computed solution.
Since ®(q)=0, error norm is redefined as:

err =|®(q")| (1)

Figure 11 shows the relationship between step size and
error norm of last step in the above example. Error is
shown to be rapidly decreased with step size increased.
Though large step size warrants good approximation,
computation time may be increased. So we can see that
selection of proper step size is important.

As shown in the above example, elastokinematic
behavior of a suspension system can be easily predicted
with the linear recursive formula presented in this paper.
Conventional methods of elastokinematic analysis are
based on nonlinear kinematic constraint equations and
force equilibrium equations for constrained mechanical
systems. A proper estimate of initial solutions for
generalized coordinates and Lagrangian multipliers of
these nonlinear algebraic equations is difficult. In order to
circumvent the difficulty of finding reasonable estimates,
the complex computing methods such as the method of
minimizing the potential energy of the system or

fictitious damping method has been proposed. On the
other hand, the proposed linearized equations can be
directly computerized in codes by virtue of recursive
formula. In addition, since the solutions for linear matrix
form of equations are offered by simple linear algebraic
methods, the proposed methods have the advantage of
obtaining solutions by simple and fast way.

4. CONCLUSION

Kinematic and compliance characteristics of suspension
systems have direct influence on ride and handling of a
vehicle. In this study, linear recursive formula has been
derived to compute elastokinematic characteristics of a
suspension systems. The analytical linearization proce-
dure based on force equilibrium approach is straight-
forward and simple. Moreover, they can be accurately
solved using linear algebraic methods, instead of com-
plicated and time-consuming implicit methods. Derived
linearized form of recursive formula can be easily
computerized in codes and solved by simple matrix
methods. It is shown that these equations can be applied
to any suspension system and are verified through the
comparison ADAMS results.

REFERENCES

Bundrof, R. T. (1976). The cornering compliance concept
for description of vehicle directional control properties.
SAE Paper No. 760713.

Ellis, J. R., Burns, S. C., Garrot, W. R. and Bell, S. C.
(1987). The design of a suspension parameter
measurement device. S4E Paper No. 870576.

Erdogan, L., Guenther, D. A. and Heydinger, G. J. (1999).
Suspension parameter measurement using side-pull
test to enhance modeling of vehicle roll. SAE Paper
No. 1999-01-1323.

Gorder, K. V,, David, T. and Basas, J. (2000). Steering
and suspension test and analysis. SAE Paper No. 2000-
01-1626.

Kasprzak, E. M. and Milliken, D. L. (2000). MRA
vehicle dynamics simulation-Matlab/Simulink. SAE
Paper No. 2000-01-1624.

Lee, S. B., Park, J. R. and Yim, H. J. (2002). Numerical
approximation of vehicle joint stiffness by using
response surface method. Int. J. Automotive Technology
3,3, 117-122.

Mani, N. K., Haug, E. J. and Atkinson, K. E. (1985).
Application of singular value decomposition for
analysis of mechanical system dynamics. ASME J.
Mechanisms, Transmissions, and Automation in Design
107, 82-87.

Min, H. K., Lee, J. M. and Tak, T. O. (1997). Kinematic

design sensitivity analysis of suspension systems using



ELASTOKINEMATIC ANALYSIS OF A SUSPENSION SYSTEM WITH LINEAR RECURSIVE FORMULA 381

direct differentiation. Trans. Korean Society of
Automotive Engineers S, 1, 38—48.

Nikravesh, P. E. (1988). Computer-Aided Analysis of
Mechanical Systems. Prentice-Hall. Englewood Cliffs.
NJ.

Orlandea, N., Chase, M. A. and Calahan, D. A. (1977). A
sparsity-oriented approach to the dynamic analysis and
design of mechanical systems — Part [ and II. ASME J.

- Engineering for Industry, 99, 773-784.

Shimatani, H., Murata, S., Watanabe, K., Kaneko, T. and
Sakai, H. (1999). Development of Torsion beam rear
suspensoin system with toe control links. SAE Paper

No. 1999-01-0045.

Tsukuda, Y., Tsubota, Y., Tonomura, H. and Noguchi, H.
(1988). Development of a new multi-link rear sus-
pension. SAE Paper No. 881774.

Wehage, R. A. and Haug E. J. (1982). Generalized
coordinate partitioning for dimension reduction in
analysis of constrained dynamic system. ASME J.
Mechanical Design, 104, 247-255.

Zhang, L. J., Lee, C. M. and Wang, Y. S. (2002). A study
on nonstationary random vibration of a vehicle in time
and frequency domains. /nt. J. Automotive Technology
3,3,101-109.



