• Title/Summary/Keyword: elastic behaviors

Search Result 429, Processing Time 0.022 seconds

Buckling behaviors of FG porous sandwich plates with metallic foam cores resting on elastic foundation

  • Abdelkader, Tamrabet;Belgacem, Mamen;Abderrahmane, Menasria;Abdelhakim, Bouhadra;Abdelouahed, Tounsi;Mofareh Hassan, Ghazwani;Ali, Alnujaie;S.R., Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.289-304
    • /
    • 2023
  • The main objective of this paper is to study the effect of porosity on the buckling behavior of thick functionally graded sandwich plate resting on various boundary conditions under different in-plane loads. The formulation is made for a newly developed sandwich plate using a functional gradient material based on a modified power law function of symmetric and asymmetric configuration. Four different porosity distribution are considered and varied in accordance with material propriety variation in the thickness direction of the face sheets of sandwich plate, metal foam also is considered in this study on the second model of sandwich which containing metal foam core and FGM face sheets. New quasi-3D high shear deformation theory is used here for this investigate; the present kinematic model introduces only six variables with stretching effect by adopting a new indeterminate integral variable in the displacement field. The stability equations are obtained by Hamilton's principle then solved by generalized solution. The effect of Pasternak and Winkler elastic foundations also including here. the present model validated with those found in the open literature, then the impact of different parameters: porosities index, foam cells distribution, boundary conditions, elastic foundation, power law index, ratio aspect, side-to-thickness ratio and different in-plane axial loads on the variation of the buckling behavior are demonstrated.

Mechanical behavior analysis of FG-CNTRC porous beams resting on Winkler and Pasternak elastic foundations: A finite element approach

  • Zakaria Belabed;Abdeldjebbar Tounsi;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Khaled Mohamed Khedher;Mohamed Abdelaziz Salem
    • Computers and Concrete
    • /
    • v.34 no.4
    • /
    • pp.447-476
    • /
    • 2024
  • The current research proposes an innovative finite element model established within the context of higher-order beam theory to examine the bending and buckling behaviors of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) beams resting on Winkler-Pasternak elastic foundations. This two-node beam element includes four degrees of freedom per node and achieves inter-element continuity with both C1 and C0 continuities for kinematic variables. The isoparametric coordinate system is implemented to generate the elementary stiffness and geometric matrices as a way to enhance the existing model formulation. The weak variational equilibrium equations are derived from the principle of virtual work. The mechanical properties of FG-CNTRC beams are considered to vary gradually and smoothly over the beam thickness. The current investigation highlights the influence of porosity dispersions through the beam cross-section, which is frequently omitted in previous studies. For this reason, this analysis offers an enhanced comprehension of the mechanical behavior of FG-CNTRC beams under various boundary conditions. Through the comparison of the current results with those published previously, the proposed finite element model demonstrates a high rate of efficiency and accuracy. The estimated results not only refine the precision in the mechanical analysis of FG-CNTRC beams but also offer a comprehensive conceptual model for analyzing the performance of porous composite structures. Moreover, the current results are crucial in various sectors that depend on structural integrity in specific environments.

An Availability Analysis on the Gap K-Joints using High Strength Circular Hollow Section Members (고강도 원형강관 갭K형 접합의 사용성 해석)

  • Ahn, Kwan-Su;Choi, Byong-Jeong;Oh, Young-Suk;Kim, Jae-Woon
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.109-119
    • /
    • 2010
  • There are many restrictions in the application of high-strength HSSs, including yield strength and yield ratio for the 600-MPa steel. The AISC and Canadian codes recommend that the yield strength and yield ratio of HSS members be 360 MPa and 80%, respectively. It is important to understand the true buckling behaviors of HSSs using high-strength steel at the limit states. There are many experimental data regarding the rectangular HSSs, and the circular ones are not enough for high-strength steel. Therefore, this study was conducted to create a better understanding of the buckling behaviors of the 600- and 400-MPa steels based on the results of the finite-element analysis that was done before the experiment. To understand the structural behaviors of the aforementioned steels, the width-to-thickness ratios, the angle of the web members, the yield strength, and the gap of the web members were selected as the main parameters in this study, and ABAQUS, a general finite-element program, was used.As a result, the compression web member reached elastic buckling in the 600-MPa steel and inelastic buckling in the 400-MPa steel. A brittle fracture occurred in the case where the yield ratio was greater than 80%. At the same time, it was found that the limit strength determined via FEM analysis had a higher value compared to the code evaluation with the variation of the width-to-thickness ratio in the main code member. The change in the connection load in high-strength steels was not identified by the other factors.

Estimation of C*-Integral for Defective Components with General Creep-Deformation Behaviors (일반 크리프 거동을 고려한 균열 구조물 C*-적분 예측)

  • Kim, Yeong-Jin;Kim, Jin-Su;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.795-802
    • /
    • 2002
  • For assessing significance of a defect in a component operating at high (creeping) temperatures, accurate estimation of fracture mechanics parameter, $C^{*}$-integral, is essential. Although the J estimation equation in the GE/EPRl handbook can be used to estimate the $C^{*}$-integral when the creep -deformation behavior can be characterized by the power law creep, such power law creep behavior is a very poor approximation for typical creep behaviors of most materials. Accordingly there can be a significant error in the $C^{*}$-integral. To overcome problems associated with GE/EPRl approach, the reference stress approach has been proposed, but the results can be sometimes unduly conservative. In this paper, a new method to estimate the $C^{*}$-integral for deflective components is proposed. This method improves the accuracy of the reference stress approach significantly. The proposed calculations are then validated against elastic -creep finite element (FE) analyses for four different cracked geometries following various creep -deformation constitutive laws. Comparison of the FE $C^{*}$-integral values with those calculated from the proposed method shows good agreements.greements.

Effect of local wall thinning on ratcheting behavior of pressurized 90° elbow pipe under reversed bending using finite element analysis

  • Chen, Xiaohui;Chen, Xu
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.931-950
    • /
    • 2016
  • Ratcheting deformation of pressurized Z2CND18.12N stainless steel $90^{\circ}$ elbow pipe with local wall thinning subjected to constant internal pressure and reversed bending was studied using finite element analysis. Chen-Jiao-Kim (CJK) kinematic hardening model, which was used to simulate ratcheting behavior of pressurized $90^{\circ}$ elbow pipe with local wall thinning at extrados, flanks and intrados, was implemented into finite element software ANSYS. The local wall thinning was located at extrados, flanks and intrados of $90^{\circ}$ elbow pipe, whose geometry was rectangular cross-section. The effect of depth, axial length and circumferential angle of local wall thinning at extrados, flanks and intrados on the ratcheting behaviors of $90^{\circ}$ elbow pipe were studied in this paper. Three-dimensional elastic-plastic analysis with Chen-Jiao-Kim (CJK) kinematic hardening model was carried out to evaluate structural ratcheting behaviors. The results indicated that ratcheting strain was generated mainly along the hoop direction, while axial ratcheting strain was relatively small.

Analysis of Fluid-Structure Interaction for Development of Korean Inflatable Rubber Dams for Small Hydropower (소수력 발전용 한국형 공기주입식 고무댐 개발을 위한 유체-구조 연성 해석)

  • Hwang, Tae-Gyu;Kim, Jin-Gu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1221-1230
    • /
    • 2008
  • Inflatable rubber dams are used for controlling flood, impounding water for recreations, preventing beach erosions, diverting water for irrigations, and generating hydropower. They are long, flexible, inflated with air, cylindrical structures on a rigid horizontal foundation such as concrete. The dam is modeled as an elastic shell inflated with air. The mechanical behaviors of the inflated dam model were investigated by using the finite element method. The analysis process such as One Way Coupling Fluid-Structure Interaction consists of two steps. First, the influences of the fluid side were investigated, viz, the shape changes of the inflated rubber dam due to the fluid motions was captured when the height of the dam was 30cm with air pressure 0.01MPa, at which the pressure distributions over the surface of the dam were calculated. And next, the structural deformations were calculated using the pressure distributions. The initial inlet velocity for flow field was set to 0.1m/s. The structural deformation behaviors were investigated. The final research goal is to develop a Korean Inflatable Rubber Dam to be used for generating small hydropower.

Dymamic Behavior of Large Concrete Panel Structures Subjected Seismic Loads (지진하중을 받는 대형 콘크리트 판구조의 동적거동-3층 입체구조의 진동실험결과를 중심으로)

  • 서수연;박병순;백용준;이원호;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.148-153
    • /
    • 1993
  • The paper presents the results of shaking table test conducted on the 1/3.3 scaled large concrete panel model. The behaviors of large concrete panel structures subjected to seismic excitations are controlled by capacity of horizontal and vertical joints. To Study the seismic capacity of the large concrete panel structures, experimental researches for joints and structural assemblage are needed. Especially, since the magnitude of seismic loads are depended on the variation of time, period and accelerations, dynamic test is needed for estimating the seismic resistance of large concrete panel structures. The objective of this paper is to study the behaviors of large concrete panel structures on seismic excitations and to estimate the safety. Test results are as follows : 1) Test model was critically damaged in the first floor horizontal joint by rocking. 2) Elastic limit(0.12kg) of test model was 5times higher than that of korean seismic design code. 3) Maxium base shear of test model at the ground acceleration of 0.12g was 3.5 times higher than the result of equivalent static analysis. 4) Damping ratio of test model turned out 3.9~5.3% and the period at 0.12g was 0.065sec.

  • PDF

Vortex behavior in the inertial flow of viscoelastic fluids past a confined cylinder

  • Kim, Ju Min;Kim, Chongyoup;Chung, Changkwon;Ahn, Kyung Hyun;Lee, Seung Jong
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.3
    • /
    • pp.117-128
    • /
    • 2004
  • The effect of molecular parameters on the steady vortex behaviors in the inertial viscoelastic flow past a cylinder has been investigated. FENE-CR model was considered as a constitutive equation. A recently developed iterative solution method (Kim et al., (in press)) was found to be successfully applicable to the computation of inertial viscoelastic flows. The high-resolution computations were carried out to understand the detailed flow behaviors based on the efficient iterative solution method armed with ILU(0) type pre-conditioner and BiCGSTAB method. The discrete elastic viscous split stress-G/streamline upwind Petrov Galerkin (DEVSS-G/SUPG) formulation was adopted as a stabilization method. The vortex size decreased as elasticity increases. However, the vortex enhancement was also observed in the case of large extensibility, which means that the vortex behavior is strongly dependent upon the material parameters. The longitudinal gradient of normal stress was found to retard the formation of vortex, whereas the extensional viscosity played a role in the vortex enhancement. The present results are expected to be helpful for understanding the inertial vortex dynamics of viscoelastic fluids in the flow past a confined cylinder.

Experimental study on the cable rigidness and static behaviors of AERORail structure

  • Li, Fangyuan;Wu, Peifeng;Liu, Dongjie
    • Steel and Composite Structures
    • /
    • v.12 no.5
    • /
    • pp.427-444
    • /
    • 2012
  • This paper presented a new aerial platform-AERORail for rail transport and its structure evolution based on the elastic stiffness of cable; through the analysis on the cable properties when the cable supported a small service load with high-tensile force, summarized the theoretical basis of the AERORail structure and the corresponding simplified analysis model. There were 60 groups of experiments for a single naked cable model under different tensile forces and different services loads, and 48 groups of experiments for the cable with rail combined structure model. The experimental results of deflection characteristics were compared with the theoretical values for these two types of structures under the same conditions. It proved that the results almost met the classical cable theory. The reason is that a small deflection was required when this structure was applied. After the tension increments tests with moving load, it is verified that the relationships between the structure stiffness and tension force and service load are simple. Before further research and applications are made, these results are necessary for the determination of the reasonable and economic tensile force, allowable service load for the special span length for this new platform.

Experimental studies on steel frame structures of traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.235-255
    • /
    • 2016
  • This paper experimentally investigated the behavior of steel frame structures of traditional-style buildings subjected to combined constant axial load and reversed lateral cyclic loading conditions. The low cyclic reversed loading test was carried out on a 1/2 model of a traditional-style steel frame. The failure process and failure mode of the structure were observed. The mechanical behaviors of the steel frame, including hysteretic behaviors, order of plastic hinges, load-displacement curve, characteristic loads and corresponding displacements, ductility, energy dissipation capacity, and stiffness degradation were analyzed. Test results showed that the Dou-Gong component (a special construct in traditional-style buildings) in steel frame structures acted as the first seismic line under the action of horizontal loads, the plastic hinges at the beam end developed sufficiently and satisfied the Chinese Seismic Design Principle of "strong columns-weak beams, strong joints-weak members". The pinching phenomenon of hysteretic loops occurred and it changed into Z-shape, indicating shear-slip property. The stiffness degradation of the structure was significant at the early stage of the loading. When failure, the ultimate elastic-plastic interlayer displacement angle was 1/20, which indicated high collapse resistance capacity of the steel frame. Furthermore, the finite element analysis was conducted to simulate the behavior of traditional-style frame structure. Test results agreed well with the results of the finite element analysis.