• 제목/요약/키워드: elastic analysis

검색결과 4,669건 처리시간 0.031초

돼지 하악 과두의 해면골에서 유한요소분석법으로 예측한 방향에 따른 탄성율과 3차원 골 미세지표 간의 상관관계 (The relationship between 3D bone architectural parameters and elastic moduli of three orthogonal directions predicted from finite elements analysis)

  • 박관수;이삼선;허경회;이원진;허민석;최순철
    • Imaging Science in Dentistry
    • /
    • 제38권2호
    • /
    • pp.81-87
    • /
    • 2008
  • Purpose: To investigate the relationship between 3D bone architectural parameters and direction-related elastic moduli of cancellous bone of mandibular condyle. Materials and Methods: Two micro-pigs (Micro-$pig^R$, PWG Genetics Korea) were used. Each pig was about 12 months old and weighing around 44 kg. 31 cylindrical bone specimen were obtained from cancellous bone of condyles for 3D analysis and measured by micro-computed tomography. Six parameters were trabecular thickness (Tb. Th), bone specific surface (BS/BV), percent bone volume (BV/TV), structure model index (SMI), degree of anisotropy (DA) and 3-dimensional fractal dimension (3DFD). Elastic moduli of three orthogonal directions (superior-inferior (SI), medial-lateral (ML), andterior-posterior (AP) direction) were calculated through finite element analysis. Results: Elastic modulus of superior-inferior direction was higher than those of other directions. Elastic moduli of 3 orthogonal directions showed different correlation with 3D architectural parameters. Elastic moduli of SI and ML directions showed significant strong to moderate correlation with BV/TV, SMI and 3DFD. Conclusion: Elastic modulus of cancellous bone of pig mandibular condyle was highest in the SI direction and it was supposed that the change into plate-like structure of trabeculae was mainly affected by increase of trabeculae of SI and ML directions.

  • PDF

직교 이방적 사질토의 미시역학적 탄소성 모델링: II. 미시역학적 해석 (Elastic-plastic Micromechanics Modeling of Cross-anisotropic Granular Soils: II. Micromechanics Analysis)

  • 정영훈;정충기
    • 한국지반공학회논문집
    • /
    • 제23권3호
    • /
    • pp.89-100
    • /
    • 2007
  • 본 논문과 함께 제출한 논문에서는 미시역학 기반의 새로운 탄소성 모델의 정식화에 대해 설명하였다. 본 논문에서는 사질토 변형의 탄성 및 탄소성 거동을 미시역학에 근거하여 자세히 분석하였다. 모델에 필요한 변수 평가를 위한 과정을 제시하였다. 등방 및 삼축 압축 시험에서 나타난 사질토의 탄성 거동을 분석한 결과, 직교 이방 탄성계수의 응력 종속성은 미시적 수직 강성에서 나타난 수직 접촉력의 거듭제곱 함수 형태가 반영되어 나타나며, 삼축 압축 응력 상태에서는 조직 이방성의 변화가 응력 종속성에 영향을 미침을 알 수 있었다. 미시역학적 해석을 통해 소성 변형이 매우 낮은 변형률 수준에서도 발현되며, 변형 중 사질토 강성의 비선형적 감소는 접촉점에서의 접선 방향 소성 변형에 의해 나타남을 밝혔다.

2차효과를 고려한 강사장교의 개선된 좌굴해석 (An Improved Stability Design of Steel Cable-Stayed Bridges using Second-Order Effect)

  • 경용수;김남일;이준석;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.993-1000
    • /
    • 2006
  • Practical stability design method of main members of cable-stayed bridges is proposed and discussed through a design example. For this purpose, initial tensions of stay cables and axial forces of main members are firstly determined using initial shaping analysis of bridges under dead loads. And then the effective buckling length using system elastic/inelastic buckling analysis and bending moments considering $P-{\delta}-{\Delta}$ effect by second-order elastic analysis are calculated for main girder and pylon members subjected to both axial forces and moments, respectively. Particularly, load combinations of dead and live loads, in which maximum load effects due to live loads are obtained, are taken into account and effects of live loads on effective buckling lengths are investigated.

  • PDF

Derivation of the Extended Elastic Stiffness Formula of the Holddown Spring Assembly Comprised of Several Leaves

  • Song, Kee-Nam;Kang, H.S.;Yoon, K.H.
    • Nuclear Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.328-334
    • /
    • 1999
  • Based on the Euler beam theory and the elastic strain energy method, the elastic stiffness formula of the holddown spring assembly consisting of several leaves was previously derived. Even though the previous formula was known to be useful to estimate the elastic stiffness of the holddown spring assembly, recently it was reported that the elastic stiffness from the previous formula deviated greatly from the test results as the number of leaves was increased. The objective of this study is to extend the previous formula in order to resolve such an increasing deviation when increasing the number of leaves. Additionally, considering the friction forces acting on the interfaces between the leaves, we obtained an extended elastic stiffness formula. The characteristic test and the elastic stiffness analysis on the various kinds of specimens of the holddown spring assembly have been carried out; the validity of the extended formula has been verified by the comparison of their results. As a result of comparisons, it is found that the extended formula is able to evaluate the elastic stiffness of the holddown spring assembly within the maximum error range of + 12%, irrespective of the number of the leaves.

  • PDF

탄성변형으로 인한 틸팅패드 저널베어링의 예압 변화 (Elastic Deformation Induced Preload Change in Tilting Pad Journal Bearing)

  • 이동현;서준호
    • Tribology and Lubricants
    • /
    • 제39권3호
    • /
    • pp.102-110
    • /
    • 2023
  • This study aims to quantify the variation in the performance of a tilting pad journal bearing (TPJB) owing to the elastic deformation of its pad. To this end, we first defined a parameter, "elastic preload", and predicted the changes in the performance of the TPJB, as a function of the preload amount. We used the iso-viscosity Reynolds equation, which ignores the temperature rise due to viscous shear in thin films, and the resultant thermal deformation of the bearing structure. We employed a three-dimensional finite element model to predict the elastic deformation of the bearing pad, and a transient analysis, to converge to a static equilibrium condition of the flexible pads and journal. Conducting a modal coordinate transformation helped us avoid heavy computational issues arising from a mesh refinement in the three-dimensional finite element pad model. Moreover, we adopted the Hertzian contact model to predict the elastic deformation at the pivot location. With the aforementioned overall strategy, we predicted the performance changes owing to the elastic deformation of the pad under varying load conditions. From the results, we observed an increase in the preload due to the pad elastic deformation.

탄성지반위에 놓인 비국소 자기-전기-탄성 나노 판의 구조안정해석 (Structural stability analysis of nonlocal Megneto-Electro-Elastic(MEE) nano plates on elastic foundation)

  • 한성천;박원태
    • 한국산학기술학회논문지
    • /
    • 제18권9호
    • /
    • pp.52-60
    • /
    • 2017
  • 본 논문은 탄성지반위에 놓인 비국소 자기-전기-탄성 나노 판의 구조안정에 관하여 1차 전단변형이론을 이용하여 분석하였다. 4변이 단순지지된 자기-전기-탄성 나노 판의 좌굴하중을 구하기 위하여 Navier 방법을 적용하였다. 기존의 연구들에서는 2방향 좌굴해석은 거의 연구되지 않았다. Maxwell 방정식과 자기-전기 경계조건에 따라 자기-전기-탄성 나노 판의 두께 방향에 따른 자위 및 전위의 변화가 결정된다. 자기-전기-탄성 나노 판의 탄성이론을 재 공식화하기 위하여 Eringen의 비국소 미분 구성 관계식을 사용하였고 변분이론을 이용하여 비국소 탄성이론의 지배방정식을 연구하였다. 탄성지반의 효과는 Pasternak의 가정을 적용하였다. 비국소 이론과 국소 이론의 관계를 계산 결과를 통하여 분석하였다. 또한, 전위 및 자위의 크기, 비국소 매개변수, 탄성지반 매개변수 그리고 폭-두께 비에 따른 구조적 안정문제를 연구하였다. 분석 결과들은 전위 및 자위의 효과를 나타내었다. 이러한 계산 결과들은 자기-전기-탄성 재료로 구성된 신소재 구조물에 관한 향후 연구의 비교자료가 될 수 있을 것이다.

2차 탄성해석을 이용한 강뼈대구조의 초기결함 좌굴설계 (Stability Design of Steel Frames considering Initial Imperfection based on Second-Order Elastic Analysis)

  • 경용수;이창환;김문영
    • 대한토목학회논문집
    • /
    • 제28권4A호
    • /
    • pp.465-474
    • /
    • 2008
  • 일반적으로, 보-기둥 부재로 구성된 강뼈대구조물의 설계는 개별부재의 유효좌굴길이를 고려하여 설계기준에서 제시한 안정성 평가식을 적용하고 있다. 그러나 이 방법은 구조물에서 상대적으로 작은 압축력이 적용되는 부재에서는 유효좌굴길이가 커지는 문제가 발생하게 된다. 이러한 문제를 극복하고자 본 연구에서는 대상 구조물의 초기결함(initial imperfection)을 고려한 2차 탄성해석법을 제시한다. 이 방법은 탄성좌굴 고유치해석으로 산정된 좌굴모드 및 좌굴고유치, 개별부재의 축력을 이용하여, 가장 작은 무차원 세장비를 가진 부재를 선정하고, 그 부재에 대하여 기하적, 재료적인 효과가 고려된 설계기준의 기준강도곡선으로부터 좌굴모드에 대한 증폭량을 산정한다. 이렇게 결정된 증폭량을 대상 구조물의 좌굴모드에 증폭시켜 2차 탄성해석을 수행하고, 개별부재의 안정성을 평가한다. 본 방법의 타당성을 확인하기 위하여, 8층 및 4층으로 이루어진 평면 강뼈대구조물에 적용시키고, 설계기준에서 제시하는 안정성 평가법과 비교한다.

설계 만감도 해석을 활용한 선형 시스템 진동내구 평가 (Estimation of the vibration fatigue of a linear elastic system based on a desiign sensitivity analysis)

  • 김찬중;김규식;강호영;진여화;이봉현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 추계학술대회 논문집
    • /
    • pp.491-496
    • /
    • 2010
  • The direct design modification of problematic component is disallowed in order to sacrifice other major factors such as a stability or a major performance. So, the best design policy is to risvise the immature structural medchanism under the minimal design change as soon as possible. For this paper presents a new design sensitivity analysis based on transmissibility rtio (TR) of response acceleration to find a proper candidate for the minimal design modification. The new sensitivity analysis is based on the fact that the sensitivity of TR over a small design change is inversly proportinal to the magnitude of TR. The theory of proposed design sensitivity analysis is simulated with the variance of TR over a dynamic change. Then, new methodology is appplied for a linear elastic specimen to detect the most sensitive node over a design change using measured accleration data during uni-axial vibration test, The physical verification of the sensitivity method is conducted on the CAE model of a linear elastic specimen by adding concentration mass and the vibration fatigue of the simple specimen is analyzed to estimate the relationship between fatigue behaviors and sensitivity consequences.

  • PDF

Contact analysis of spherical ball and a deformable flat model with the effect of tangent modulus

  • Sathish Gandhi, V.C.;Ramesh, S.;Kumaravelan, R.;Thanmanaselvi, M.
    • Structural Engineering and Mechanics
    • /
    • 제44권1호
    • /
    • pp.61-72
    • /
    • 2012
  • The paper is on contact analysis of a spherical ball with a deformable flat, considering the effect of tangent modulus on the contact parameters of a non-adhesive frictionless elastic-plastic contact. The contact analysis of this model has been carried out using analysis software Ansys and Abaqus. The contact parameters such as area of contact between two consecutive steps, volume of bulged material are evaluated from the formulated equations. The effect of the tangent modulus is considered for determining these parameters. The tangent modulus are accounted between 0.1E and 0.5E of materials E/Y value greater than 500 and less than 1750. Result shows that upto an optimal tangent modulus values the elastic core push up to the free surface in the flat. The simulation is also carried out in Abaqus and result provide evidence for the volume of bulged material in the contact region move up and flow into the free surface of the flat from the contact edge between the ball and flat. The strain energy of the whole model is varied between 20 to 40 percentage of the stipulated time for analysis.

발목관절 보조 도구에 따른 만성 뇌졸중 편마비 장애인의 보행 비교 (Comparison of gait ability according to types of assistive device for ankle joint of chronic hemiplegic stroke survivors)

  • 박동천;정정희;김원득;손일현;이양진;이규창
    • 대한물리치료과학회지
    • /
    • 제28권2호
    • /
    • pp.30-39
    • /
    • 2021
  • Background: The purpose of this study was to compare the differences in gait and mobility according to the types of assistive device for ankle joint including ankle foot orthosis (AFO), non-elastic tape, elastic tape, and high ankle shoes in chronic hemiplegic stroke survivors. Design: A cross-over design. Methods: Twelve hemiplegic stroke survivors participated in this study, and they walked under 5 different conditions including bare feet, wearing a AFO, wearing a non-elastic tape, wearing a elastic tape, and wearing a high ankle shoes. During the participants walked, the spatio-temporal gait analysis and mobility examinations were performed. For the spatio-temporal gait analysis (gait velocity and cadence, step length, stride length, and single and double leg support time) and mobility examinations, the gait mat, TUG and TUDS were used. Results: As s results, on the AFO, non-elastic tape, elastic tape, and high ankle shoes, there were significantly differences in the all spatio-temporal gait parameters, TUG, and TUDS compared to barefoot (p<0.05). In particular, all spatio-temporal gait parameters, TUG, TUDS were significantly improved with AFO compared to barefoot. TUG was significantly improved with AFO compared to non-elastic tape, TUG and TUDS were significantly improved with AFO compared to elastic tape, gait velocity was significantly improved with non-elastic tape compared to high ankle shoes, gait velocity and TUG were significantly improved with elastic tape compared to high ankle shoes, and TUDS was significantly improved with non-elastic tape compared to elastic tape. Conclusion: The AFO, non-elastic tape, elastic tape, and high ankle shoes showed a positive effect on gait and mobility compared to barefoot, and among them, wearing AFO was most effective for improving gait and mobility of chronic hemiplegic stroke survivors.