• Title/Summary/Keyword: edge estimation method

Search Result 222, Processing Time 0.022 seconds

Measurement of the Modulation Transfer Function of Infrared Imaging System by Modified Slant Edge Method

  • Li, Hang;Yan, Changxiang;Shao, Jianbing
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.381-388
    • /
    • 2016
  • The performance of a staring infrared imaging system can be characterized based on estimating the modulation transfer function (MTF). The slant edge method is a widely used MTF estimation method, which can effectively solve the aliasing problem caused by the discrete undersampling of the infrared focal plane array. However, the traditional slant edge method has some limitations such as the low precision of the edge angle extraction and using the approximate function to fit the edge spread function (ESF), which affects the accuracy of the MTF estimation. In this paper, we propose a modified slant edge method, including an edge angle extraction method that can improve the precision of the edge angle extraction and an ESF fitting algorithm which is based on the transfer function model of the imaging system, to enhance the accuracy of the MTF estimation. This modified slant edge method presents higher estimation accuracy and better immunity to noise and edge angle than other traditional methods, which is demonstrated by the simulation and application experiments operated in our study.

Noise Estimation Using Edge Detection (에지 검출을 이용한 잡음 예측)

  • Kim, Young-Ro;Dong, Sung-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.281-286
    • /
    • 2013
  • In this paper, we propose a noise estimation method using edge detection. It is a filter-based noise estimation method. Edge detection is to exclude structures and details which have an effect on the noise estimation. To detect edge, we use a modified rational filter which is robust to details of images. The proposed noise estimation method is more efficiently applied to noise estimation in various types of images and has better results than those of conventional filter-based noise estimation methods.

Pose Estimation of 3D Object by Parametric Eigen Space Method Using Blurred Edge Images

  • Kim, Jin-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1745-1753
    • /
    • 2004
  • A method of estimating the pose of a three-dimensional object from a set of two-dimensioal images based on parametric eigenspace method is proposed. A Gaussian blurred edge image is used as an input image instead of the original image itself as has been used previously. The set of input images is compressed using K-L transformation. By comparing the estimation errors for the original, blurred original, edge, and blurred edge images, we show that blurring with the Gaussian function and the use of edge images enhance the data compression ratio and decrease the resulting from smoothing the trajectory in the parametric eigenspace, thereby allowing better pose estimation to be achieved than that obtainable using the original images as it is. The proposed method is shown to have improved efficiency, especially in cases with occlusion, position shift, and illumination variation. The results of the pose angle estimation show that the blurred edge image has the mean absolute errors of the pose angle in the measure of 4.09 degrees less for occlusion and 3.827 degrees less for position shift than that of the original image.

  • PDF

Noise Estimation using Edge Detection in Moving Pictures (에지 검출을 이용한 동영상 잡음 예측)

  • Kim, Young-Ro;Oh, Tae-Myung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.207-212
    • /
    • 2015
  • We propose a noise estimation method using edge detection in moving pictures. Edge detection is to exclude structures and details which have an effect on the noise estimation. To detect edge, we use Sobel and morphological closing operators which are robust to details of images. The proposed noise estimation method is more efficiently applied to noise estimation in various types of moving images and has better results than those of existing noise estimation methods. Also, proposed algorithm can be efficiently applied to image and video applications.

Edge-Preserving and Adaptive Transmission Estimation for Effective Single Image Haze Removal

  • Kim, Jongho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.21-29
    • /
    • 2020
  • This paper presents an effective single image haze removal using edge-preserving and adaptive transmission estimation to enhance the visibility of outdoor images vulnerable to weather and environmental conditions with computational complexity reduction. The conventional methods involve the time-consuming refinement process. The proposed transmission estimation however does not require the refinement, since it preserves the edges effectively, which selects one between the pixel-based dark channel and the patch-based dark channel in the vicinity of edges. Moreover, we propose an adaptive transmission estimation to improve the visual quality particularly in bright areas like sky. Experimental results with various hazy images represent that the proposed method is superior to the conventional methods in both subjective visual quality and computational complexity. The proposed method can be adopted to compose a haze removal module for realtime devices such as mobile devices, digital cameras, autonomous vehicles, and so on as well as PCs that have enough processing resources.

Comparison of Performance According to Preprocessing Methods in Estimating %IMF of Hanwoo Using CNN in Ultrasound Images

  • Kim, Sang Hyun
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.185-193
    • /
    • 2022
  • There have been various studies in Korea to develop a %IMF(Intramuscular Fat Percentage) estimation method suitable for Hanwoo. Recently, a %IMF estimation method using a convolutional neural network (CNN), a kind of deep learning method among artificial intelligence methods, has been studied. In this study, we performed a performance comparison when various preprocessing methods were applied to the %IMF estimation of ultrasound images using CNN as mentioned above. The preprocessing methods used in this study are normalization, histogram equalization, edge enhancement, and a method combining normalization and edge enhancement. When estimating the %IMF of Hanwoo by the conventional method that did not apply preprocessing in the experiment, the accuracy was 98.2%. The other hand, we found that the accuracy improved to 99.5% when using preprocessing with histogram equalization alone or combined regularization and edge enhancement.

A Study On Preprocessing of Fingerprint Image Using Multi-Scale Roof Edges (다척도 지붕에지 검출방법을 이용한 지문영상의 전처리에 대한 연구)

  • Kim Soo Gyeam
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.217-224
    • /
    • 2005
  • A new roof edge detection method based on multi level scales of wavelet function is proposed in this paper roof edge and its direction are obtained in this new methods at one time. Besides. scale characteristics of detecting roof edge is analyzed. And a few new methods on fingerprint image pre-processing are described. A method segmenting foreground/background of fingerprint images is proposed, in which Prior estimation of direction field is not required any more. A segmentation method based on multi-scale roof edges is implemented. and the valid scale range of the method is defined. too. And the method is used to segment ridges and valleys in fingerprint images simultaneously The exact direction fields made up of the direction of each point in ridges can be obtained when detecting ridges exactly based on the roof edge detector, in comparison with the traditional coarse estimation of direction fields. Obviously. it will establish a solid foundation for the sequent fingerprint identification.

A Depth Estimation Using Infocused and Defocused Images (인포커스 및 디포커스 영상으로부터 깊이맵 생성)

  • Mahmoudpour, Seed;Kim, Manbae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.11a
    • /
    • pp.114-115
    • /
    • 2013
  • The blur amount of an image changes proportional to scene depth. Depth from Defocus (DFD) is an approach in which a depth map can be obtained using blur amount calculation. In this paper, a novel DFD method is proposed in which depth is measured using an infocused and a defocused image. Subbaro's algorithm is used as a preliminary depth estimation method and edge blur estimation is provided to overcome drawbacks in edge.

  • PDF

Combining an Edge-Based Method and a Direct Method for Robust 3D Object Tracking

  • Lomaliza, Jean-Pierre;Park, Hanhoon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.167-177
    • /
    • 2021
  • In the field of augmented reality, edge-based methods have been popularly used in tracking textureless 3D objects. However, edge-based methods are inherently vulnerable to cluttered backgrounds. Another way to track textureless or poorly-textured 3D objects is to directly align image intensity of 3D object between consecutive frames. Although the direct methods enable more reliable and stable tracking compared to using local features such as edges, they are more sensitive to occlusion and less accurate than the edge-based methods. Therefore, we propose a method that combines an edge-based method and a direct method to leverage the advantages from each approach. Experimental results show that the proposed method is much robust to both fast camera (or object) movements and occlusion while still working in real time at a frame rate of 18 Hz. The tracking success rate and tracking accuracy were improved by up to 84% and 1.4 pixels, respectively, compared to using the edge-based method or the direct method solely.

Digital Image Stabilization Based on Edge Detection and Lucas-Kanade Optical Flow (Edge Detection과 Lucas-Kanade Optical Flow 방식에 기반한 디지털 영상 안정화 기법)

  • Lee, Hye-Jung;Choi, Yun-Won;Kang, Tae-Hun;Lee, Suk-Gyu
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.85-92
    • /
    • 2010
  • In this paper, we propose a digital image stabilization technique using edge detection and Lucas-Kanade optical flow in order to minimize the motion of the shaken image. The accuracy of motion estimation based on block matching technique depends on the size of search window, which results in long calculation time. Therefore it is not applicable to real-time system. In addition, since the size of vector depends on that of block, it is difficult to estimate the motion which is bigger than the block size. The proposed method extracts the trust region using edge detection, to estimate the motion of some critical points in trust region based on Lucas-Kanade optical flow algorithm. The experimental results show that the proposed method stabilizes the shaking of motion image effectively in real time.