DOI QR코드

DOI QR Code

Noise Estimation using Edge Detection in Moving Pictures

에지 검출을 이용한 동영상 잡음 예측

  • Kim, Young-Ro (Dept. of Computer Science and Information, Myongji College) ;
  • Oh, Tae-Myung (Dept. of Computer Science and Information, Myongji College)
  • 김영로 (명지전문대학 컴퓨터정보과) ;
  • 오태명 (명지전문대학 컴퓨터정보과)
  • Received : 2015.02.02
  • Accepted : 2015.03.23
  • Published : 2015.04.25

Abstract

We propose a noise estimation method using edge detection in moving pictures. Edge detection is to exclude structures and details which have an effect on the noise estimation. To detect edge, we use Sobel and morphological closing operators which are robust to details of images. The proposed noise estimation method is more efficiently applied to noise estimation in various types of moving images and has better results than those of existing noise estimation methods. Also, proposed algorithm can be efficiently applied to image and video applications.

움직임 영상에서 에지 검출을 이용하여 잡음을 예측하는 방법을 제안한다. 에지 검출은 잡음 예측에 영향을 주는 구조와 세밀함을 제거하는 역할을 한다. 에지를 검출하기 위하여 잡음에 강한 소벨과 형상학 닫힘 연산자를 사용한다. 제안하는 잡음 예측 방법은 다양한 종류의 동영상에 효율적으로 적용될 수 있으며 기존 잡음 예측 방법들 보다 향상된 결과를 가진다. 또한, 제안하는 알고리즘은 영상과 비디오 응용에서 효율적으로 적용할 수 있다.

Keywords

References

  1. M. K. Ozkan, M. I Sezan, and A. M. Tekalp, "Adaptive motion-compensated filtering of noisy image sequences," IEEE Trans. Circuits Sys. Video Technol., vol. 3, pp. 277-290, Aug. 1993. https://doi.org/10.1109/76.257217
  2. J. Kim and J. W. Woods, "3-D Kalman filter image motion estimation," IEEE Trans. Image Processing, vol. 7, pp. 42-52, Jan. 1998. https://doi.org/10.1109/83.650849
  3. L. Sendur and I. W. Selesnick, "Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency," IEEE Trans. Signal Processing, vol. 50, pp. 2744-2756, Nov. 2002. https://doi.org/10.1109/TSP.2002.804091
  4. B. Tang, G. Sapiro, and V. Caselles, "Color image enhancement via chromaticity diffusion," IEEE Trans. Image Processing, vol. 10, pp. 701-707, 2001. https://doi.org/10.1109/83.918563
  5. S. -C. Tai and S. -M. Yang, "A fast method for image noise estimation using laplacian operator and adaptive edge detection," In Proc. ISCCSP 2008, Malta, pp. 12-14, Mar. 2008.
  6. J. Immerkaer, "Fast noise variance estimation," Computer Vision and Image Understanding, Vol. 64, No. 2, pp. 300-302, Sep. 1996. https://doi.org/10.1006/cviu.1996.0060
  7. J. S. Lee and K. Hoppel, "Noise modeling and estimation of remotely sensed images," in Proc. 1989 Int. Geoscience and Remote Sensing, Vancouver, Canada, vol. 2, pp.1005-1008, Jun. 1989.
  8. A. Amer, A. Mitiche, and E. Dubois, "Reliable and fast structure oriented video noise estimation," in Proc. IEEE Int. Conf. Image Processing, Montreal, Quebec, Canada, vol. 1, pp.840-843, Jul. 2002.
  9. S. G. Chang, B. Yu, and M. Vetterli, "Adaptive wavelet thresholding for image denoising and compression," IEEE Trans. Image Process., vol. 9, no. 9, pp. 1532-1546, Sep. 2000. https://doi.org/10.1109/83.862633
  10. S. G. Chang, B. Yu, and M. Vetterli, "Spatially adaptive wavelet thresholding with context modeling for image denoising," IEEE Trans. Image Process., vol. 9, no. 9, pp. 1522-1531, Sep. 2000. https://doi.org/10.1109/83.862630
  11. D. L. Donoho and I. M. Johnstone, "Ideal spatial adaption via wavelet shrinkage," Biometrika, vol. 81, pp. 425-455, 1994. https://doi.org/10.1093/biomet/81.3.425
  12. A. Hashemi and S. Beheshti, "Adaptive noise variance estimation in BayesShrink," IEEE Signal Processing Letters, vol. 17, no. 1, Jan. 2010.
  13. S. -D. Kim and K. -W. Lim, "Motion Adaptive Temporal-Spatial Noise Reduction Scheme with Separated Pre- and Post-Spatial Filter," IEIE 46SP-5-14, pp. 40-47, Sep. 2009.
  14. B. -C. Song, "Motion-compensated noise estimation for effective video processing," IEIE 46SP-5-14, pp. 120-125, Sep. 2009.

Cited by

  1. Gaussian Noise Estimation Using White Noise Test vol.16, pp.4, 2018, https://doi.org/10.14801/jkiit.2018.16.4.51