• Title/Summary/Keyword: early warning threshold

Search Result 22, Processing Time 0.025 seconds

Development Method of Early Warning Systems for Rainfall Induced Landslides (강우에 의한 돌발 산사태 예·경보 시스템 구축 방안)

  • Kim, Seong-Pil;Bong, Tae-Ho;Bae, Seung-Jong;Park, Jae-Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.135-141
    • /
    • 2015
  • The objective of this study is to develop an early warning system for rainfall induced landslides. For this study, we suggested an analysis process using rainfall forecast data. 1) For a selected slope, safety factor with saturated depth was analyzed and safety factor threshold was established (warning FS threshold=1.3, alarm FS threshold=1.1). 2) If rainfall started, saturated depth and safety factor was calculated with rainfall forecast data, 3) And every hour after safety factor is compared with threshold, then warning or alarm can issued. In the future, we plan to make a early warning system combined with the in-situ inclinometer sensors.

Study on safety early-warning model of bridge underwater pile foundations

  • Xue-feng Zhang;Chun-xia Song
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.2
    • /
    • pp.107-116
    • /
    • 2023
  • The health condition of of deep water high pile foundation is vital to the safe operation of bridges. However, pier foundations are vulnerable to damage in deep water due to exposure to sea torrents and corrosive environments over an extended period. In this paper, combined with aninvestigation and analysis of the typical damage characteristics of main pier group pile foundations, we study the safety monitoring and real-time early warning technology of the deep water high pile foundations, we propose an early warning index item and early warning threshold of deep water high pile foundation by utilizing a numerical simulation analysis and referring to domestic and foreign standards and literature. First, we combine the characteristics of structures and draw on more mature evaluation theories and experience in civil engineering-related fields such as dam and bridge engineering. Then, we establish a scheme consisting of a Early Warning Index Systemand evaluation model based on the analytic hierarchy process and constant weight evaluation method and apply the research results to a project based on the Jiashao bridge in Zhejiang province, China. Finally, we verify the rationality and reliability of the Early Warning Index Systemof the Deep Water High Pile Foundations.

Development of a Debris Flow Sensing Device and Real Time Warning System (토석류 감지장치 개발과 실시간 경보체계 구축 사례)

  • Kim, Kyung-Suk;Jang, Hyun-Ick;Chung, Sung-Yun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.273-280
    • /
    • 2008
  • Debris flow has been considered as one of the major natural hazards and possesses tens to hundreds times higher destructive potential than that of slope failure. In the past 5 years, its occurrence frequency was and is likely to increasing due to the global warming. Although various methods such as basin vegetation or structural dams can be implemented to counter measure the debris flow, these methods are not always the right answer to the problem when magnitude of debris flow is far bigger than could be defended. Land use regulations to avoid the hazard or early debris flow warning system to evacuate the expected inundated area can be more economical and practical actions for those cases. In this study, an early debris flow warning system composed of rainfall measuring device, debris flow sensing device and video camera is introduced. The system is designed to issue the warning when rainfall threshold is exceeded or debris flow is sensed by sensing device. Developed monitoring system can be used to cope promptly with the debris flow risk.

  • PDF

Real-Time Monitoring and Warning System for Slope Movements Using FBG Sensor. (광섬유격자 센서를 활용한 사면거동 실시간 안전 진단 시스템)

  • 장기태;정경선;김성환;박권제;이원효;김경태;강창국;홍성진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.60-76
    • /
    • 2000
  • Early detection in real-time response of slope movements ensures tremendous saving of lives and repair costs from catastrophic disaster Therefore, it is essential to constantly monitor the performance and integrity of slope-stabilizing structures such as Rock bolt, Nail and Pile during or after installation. We developed a novel monitoring system using Fiber Bragg Grating (FBG)sensor. It's advantages are highly sensitivity, small dimension and electro-magnetic immunity. capability of multiplexing, system integrity, remote sensing - these serve real-time health monitoring of the structures. Real-time strain measurement by the signal processing program is shown graphically and it gives a warning sound when the monitored strain state exceeds a given threshold level so that any sign of abnormal disturbance on the spot can be easily perceived.

  • PDF

Early adjusting damping force for sloped rolling-type seismic isolators based on earthquake early warning information

  • Hsu, Ting-Yu;Huang, Chih-Hua;Wang, Shiang-Jung
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.39-53
    • /
    • 2021
  • By means of installing sloped rolling-type seismic isolators (SRI), the horizontal acceleration transmitted to the to-be-protected object above can be effectively and significantly reduced under external disturbance. To prevent the maximum horizontal displacement response of SRI from reaching a threshold, designing large and conservative damping force for SRI might be required, which will also enlarge the transmitted acceleration response. In a word, when adopting seismic isolation, minimizing acceleration or displacement responses is always a trade-off. Therefore, this paper proposes that by exploiting the possible information provided by an earthquake early warning system, the damping force applied to SRI which can better control both acceleration and displacement responses might be determined in advance and accordingly adjusted in a semi-active control manner. By using a large number of ground motion records with peak ground acceleration not less than 80 gal, the numerical results present that the maximum horizontal displacement response of SRI is highly correlated with and proportional to some important parameters of input excitations, the velocity pulse energy rate and peak velocity in particular. A control law employing the basic form of hyperbolic tangent function and two objective functions are considered in this study for conceptually developing suitable control algorithms. Compared with the numerical results of simply designing a constant, large damping factor to prevent SRI from pounding, adopting the recommended control algorithms can have more than 60% reduction of acceleration responses in average under the excitations. More importantly, it is effective in reducing acceleration responses under approximately 98% of the excitations.

Structural health monitoring of a high-speed railway bridge: five years review and lessons learned

  • Ding, Youliang;Ren, Pu;Zhao, Hanwei;Miao, Changqing
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.695-703
    • /
    • 2018
  • Based on monitoring data collected from the Nanjing Dashengguan Bridge over the last five years, this paper systematically investigates the effects of temperature field and train loadings on the structural responses of this long-span high-speed railway bridge, and establishes the early warning thresholds for various structural responses. Then, some lessons drawn from the structural health monitoring system of this bridge are summarized. The main context includes: (1) Polynomial regression models are established for monitoring temperature effects on modal frequencies of the main girder and hangers, longitudinal displacements of the bearings, and static strains of the truss members; (2) The correlation between structural vibration accelerations and train speeds is investigated, focusing on the resonance characteristics of the bridge at the specific train speeds; (3) With regard to various static and dynamic responses of the bridge, early warning thresholds are established by using mean control chart analysis and probabilistic analysis; (4) Two lessons are drawn from the experiences in the bridge operation, which involves the lacks of the health monitoring for telescopic devices on the beam-end and bolt fractures in key members of the main truss.

An Experimental Study on Density Tool Calibration (광섬유격자 센서를 활용한 사면거동 실시간 안전 진단 시스템)

  • Chang, Ki-Tae;Chung, Kyung-Sun;Kim, Sung-Hwan
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.1
    • /
    • pp.7-14
    • /
    • 2005
  • Early detection in real-time response of slope movements ensures tremendous saving of lives and repair costs from catastrophic disaster. Therefore, it is essential to constantly monitor the performance and integrity of slope-stabilizing structures such as Rock bolt, Nail and Pile during or after installation. We developed a novel monitoring system using Fiber Bragg Grating (FBG) sensor. It's advantages are highly sensitivity, small dimension and electro-magnetic immunity. capability of multiplexing, system integrity, remote sensing - these serve real-time health monitoring of the structures. Real-time strain measurement by the signal processing program is shown graphically and it gives a warning sound when the monitored strain state exceeds a given threshold level so that any sign of abnormal disturbance on the spot can be easily perceived.

  • PDF

Analysis of Sensors' Behavior and Its Utility for Shallow Landslide Early Warning through Model Slope Collapse Experiment (붕괴모의실험을 통한 산사태 조기경보용 계측센서의 반응성 분석 및 활용성 고찰)

  • Kang, Minjeng;Seo, Junpyo;Kim, Dongyeob;Lee, Changwoo;Woo, Choongshik
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.2
    • /
    • pp.208-215
    • /
    • 2019
  • The goal of this study was to analyze the reactivity of a volumetric water content sensor (soil moisture sensor) and tensiometer and to review their use in the early detection of a shallow landslide. We attempted to demonstrate shallow and rapid slope collapses using three different soil ratios under artificial rainfall at 120 mm/h. Our results showed that the measured value of the volumetric water-content sensor converged to 30~37%, and that of the tensiometer reached -3~-5 kPa immediately before the collapse of the soil under all three conditions. Based on these results, we discussed a temporal range for early warnings of landslides using measurements of the volumetric water content sensors installed at the bottom of the soil slope, but could not generalize and clarify the exact timing for these early warnings. Further experiments under various conditions are needed to determine how to use both sensors for the early detection of shallow landslides.

Development of Earthquake Early Warning System nearby Epicenter based on P-wave Multiple Detection (진원지 인근 지진 조기 경보를 위한 선착 P파 다중 탐지 시스템 개발)

  • Lee, Taehee;Noh, Jinseok;Hong, Seungseo;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.107-114
    • /
    • 2019
  • In this paper, the P-wave multiple detection system for the fast and accurate earthquake early warning nearby the epicenter was developed. The developed systems were installed in five selected public buildings for the validation. During the monitoring, a magnitude 2.3 earthquake occurred in Pohang on 26 September 2019. P-wave initial detection algorithms were operated in three out of four systems installed in Pohang area and recorded as seismic events. At the nearest station, 5.5 km from the epicenter, P-wave signal was detected 1.2 seconds after the earthquake, and S-wave was reached 1.02 seconds after the P-wave reached, providing some alarm time. The maximum accelerations recorded in three different stations were 6.28 gal, 6.1 gal, and 5.3 gal, respectively. The alarm algorithm did not work, due to the high threshold of the maximum ground acceleration (25.1 gal) to operate it. If continuous monitoring and analysis are to be carried out in the future, the developed system could use a highly effective earthquake warning system suitable for the domestic situation.

Landslide Triggering Rainfall Threshold Based on Landslide Type (사면파괴 유형별 강우 한계선 설정)

  • Lee, Ji-Sung;Kim, Yun-Tae;Song, Young-Karb;Jang, Dae-Heung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.12
    • /
    • pp.5-14
    • /
    • 2014
  • Most of slope failures have taken place between June and September in Korea, which cause a considerable damage to society. Rainfall intensity and duration are very significant triggering factors for landslide. In this paper, landslide-triggering rainfall threshold consisting of rainfall intensity-duration (I-D) was proposed. For this study, total 255 landslides were collected in landslide inventory during 1999 to 2012 from NDMI (National Disaster Management Institute), various reports, newspapers and field survey. And most of the required rainfall data were collected from KMA (Korea Meteorological Administration). The collected landslides were classified into three categories: debris flow, shallow landslide and unconfirmed. A rainfall threshold was proposed based on landslide type using statistical method such as quantile-regression method. Its validation was carried out based on 2013 landslide database. The proposed rainfall threshold was also compared with previous rainfall thresholds. The proposed landslide-triggering rainfall thresholds could be used in landslide early warning system in Korea.