DOI QR코드

DOI QR Code

Analysis of Sensors' Behavior and Its Utility for Shallow Landslide Early Warning through Model Slope Collapse Experiment

붕괴모의실험을 통한 산사태 조기경보용 계측센서의 반응성 분석 및 활용성 고찰

  • Kang, Minjeng (Division of Forest Disaster Management, National Institute of Forest Science) ;
  • Seo, Junpyo (Division of Forest Disaster Management, National Institute of Forest Science) ;
  • Kim, Dongyeob (Division of Forest Disaster Management, National Institute of Forest Science) ;
  • Lee, Changwoo (Division of Forest Disaster Management, National Institute of Forest Science) ;
  • Woo, Choongshik (Division of Forest Disaster Management, National Institute of Forest Science)
  • 강민정 (국립산림과학원 산림방재연구과) ;
  • 서준표 (국립산림과학원 산림방재연구과) ;
  • 김동엽 (국립산림과학원 산림방재연구과) ;
  • 이창우 (국립산림과학원 산림방재연구과) ;
  • 우충식 (국립산림과학원 산림방재연구과)
  • Received : 2018.09.03
  • Accepted : 2019.05.07
  • Published : 2019.06.30

Abstract

The goal of this study was to analyze the reactivity of a volumetric water content sensor (soil moisture sensor) and tensiometer and to review their use in the early detection of a shallow landslide. We attempted to demonstrate shallow and rapid slope collapses using three different soil ratios under artificial rainfall at 120 mm/h. Our results showed that the measured value of the volumetric water-content sensor converged to 30~37%, and that of the tensiometer reached -3~-5 kPa immediately before the collapse of the soil under all three conditions. Based on these results, we discussed a temporal range for early warnings of landslides using measurements of the volumetric water content sensors installed at the bottom of the soil slope, but could not generalize and clarify the exact timing for these early warnings. Further experiments under various conditions are needed to determine how to use both sensors for the early detection of shallow landslides.

이 연구는 붕괴모의실험을 통하여 체적함수비센서와 텐시오미터의 반응성을 분석하고, 산사태 조기경보용으로의 활용성을 검토하기 위해 수행되었다. 산림토양과 사질토의 배합비율을 조정한 3개의 토양조건에서 120 mm/h의 인공강우를 적용하여 얕은 깊이에서 빠르게 진행되는 붕괴형태를 실험적으로 모의하고, 그 과정에서의 두 센서의 반응을 분석하였다. 그 결과, 모든 실험조건에서 체적함수비센서 및 텐시오미터의 계측값은 각각 30~37%, -3~-5 kPa으로 수렴된 이후에 붕괴가 발생하였다. 실험결과를 토대로 토층 최하부에 설치된 체적함수비센서의 계측값을 활용하여 조기경보 발생시점의 범위를 논의하였으나, 이를 일반화하여 명확한 시점으로 규정할 수는 없었다. 두 센서를 실용적인 차원에서 산사태 조기경보용으로 활용하기 위해서는 다양한 조건에서의 추가적인 실험 및 검증이 필요할 것으로 생각되었다.

Keywords

HOMHBJ_2019_v108n2_208_f0001.png 이미지

Figure 1. Conceptual diagram of the flume for slope collapse experiment.

HOMHBJ_2019_v108n2_208_f0002.png 이미지

Figure 2. Sensors employed in slope collapse experiment.

HOMHBJ_2019_v108n2_208_f0003.png 이미지

Figure 3. Arrangement of both sensors on soil layer (mm).

HOMHBJ_2019_v108n2_208_f0004.png 이미지

Figure 4. Photo of before- and after-slope collapse in each experiment.

HOMHBJ_2019_v108n2_208_f0005.png 이미지

Figure 5. Temporal change of both sensors’ measurements with elapsed time (SW: soil volumetric water content sensor, T: tensiometer).

Table 1. Characteristics of soil samples used in slope collapse experiments.

HOMHBJ_2019_v108n2_208_t0001.png 이미지

Table 2. Slope collapse experiment conditions.

HOMHBJ_2019_v108n2_208_t0002.png 이미지

Table 3. Slope collapse time under each experiment condition.

HOMHBJ_2019_v108n2_208_t0003.png 이미지

Table 4. Average and standard deviation of measurements by both sensors for 10 minutes before slope collapse.

HOMHBJ_2019_v108n2_208_t0004.png 이미지

Table 5. Time difference from the moment of sensor reacting and convergence to the moment of slope collapse.

HOMHBJ_2019_v108n2_208_t0005.png 이미지

References

  1. Akca, D. 2013. Photogrammetric monitoring of an artificial generated shallow landslide. The Photogrammetric Record 28(142): 178-195. https://doi.org/10.1111/phor.12016
  2. Arnhardt, C., Asch, K., Azzam, R., Bill, R., Fernandez-Steeger, T.M., Homfeld, S.D., Kallash, A., Niemeyer, F., Ritter, H., Toloczyki, M. and Walter, K. 2007. Sensor based landslide early warning system - SLEWS: development of a geoservice infrastructure as basis for early warning systems for landslides by integration of real-time sensors. Geotechnologien Science Report, the Proceeding of Early Warning Systems in Earth Management, Kick-Off-Meeting, 10 Oct. 2007, Karlsruhe, Germany. pp. 75-88.
  3. Askarinejad, A., Casini, F., Bischof, P., Beck, A. and Springman, S.M. 2012. Rainfall induced instabilities: a field experiment on a silty sand slope in northern Switzerland. Rivista Italiana Di Geotechnica 2012(3): 50-71.
  4. Chae, B.G. and Kim, M.I. 2012. Suggestion of a method for landslide early warning using the change in the volumetric water content gradient due to rainfall infiltration. Environmental Earth Sciences 66: 1973-1986. https://doi.org/10.1007/s12665-011-1423-z
  5. Debieche, T.-H., Bogaard, T.A., Marc, V., Emblanch, C., Krzeminska, D.M. and Malet, J.-P. 2012. Hydrological and hydrochemical processes observed during a large-scale infiltration experiment at the Super-Sauze mudslide (France). Hydrological Processes 26: 2157-2170. https://doi.org/10.1002/hyp.7843
  6. Decagon Devices, Inc. website. http://www.decagon.com/products/soils/volumetricwater-content-sensors/10hs-soil-moisturelarge-area-of-influence/ (2018.07.01).
  7. Greco, R., Guida, A., Damiano, E. and Olivares, L. 2010. Soil water content and suction monitoring in model slopes for shallow flowslides early warning applications. Physics and Chemistry of the Earth 35: 127-136. https://doi.org/10.1016/j.pce.2009.12.003
  8. Hakro, M.R. and Harahap, I.S.H. 2015. Laboratory experiments on rainfall-induced flowslide from pore pressure and moisture content measurements. Natural Hazards and Earth System Sciences Discussions 3: 1575-1613. https://doi.org/10.5194/nhessd-3-1575-2015
  9. ICT international website. http://www.ictinternational.com/products/gt3-15-tensiometer-transducer-100-kpa-to-100-kpa/?from=/pro ducts/soils/water=potential-field/ (2018.07.01).
  10. Intrieri, E., Gigli, G., Casagli, N. and Nadim, F. 2013. Landslide early warning system: toolbox and general concepts. Natural Hazards and Earth System Science 13: 85-90. https://doi.org/10.5194/nhess-13-85-2013
  11. Ju, N., Huang, J., Huang, R., He, C. and Li, Y. 2015. A real-time monitoring and early warning system for landslides in Southwest China. Journal of Mountain Science 12(5): 1219-1228. https://doi.org/10.1007/s11629-014-3307-7
  12. KIGAM (Korea Institute of Geoscience and Mineral Resources). 2015. Development of an Integrated Early Detection Technology of Landslides Based on a Real-time Monitoring. KIGAM Report No. GP2015-024-2015(1). pp. 334.
  13. KIGAM (Korea Institute of Geoscience and Mineral Resources). 2016. Development of an Integrated Early Detection Technology of Landslides Based on a Real-time Monitoring. KIGAM Report No. GP2015-024-2016(2). pp. 217.
  14. Kim, D., Seo, J., Lee, C. and Woo, C. 2016. Analysis on the behaviors of soil water characteristic sensors through rainfall-induced landslide flume experiments. Journal of the Korean Society of Hazard Mitigation 16(6): 209-318. https://doi.org/10.9798/KOSHAM.2016.16.6.209
  15. Kim, G. and Lee, H. 2012. GIS based analysis of landslides factor effect in Inje area using the theory of quantification II. Journal of Korea Spatial Information Society 20(3): 57-66.
  16. Kim, K. 2007. Analysis of soil characteristics and its relationship according to the geological condition in natural slopes of the landslide area. Engineering Geology 17: 205-215.
  17. Lee, C., Kim, D., Woo, C., Kim, Y., Seo, J., and Kwon, H. (2015) Construction and operation of the national landslide forecast system using soil water index in Republic of Korea. Journal of the Korean Society of Hazard Mitigation 15(6): 213-221. https://doi.org/10.9798/KOSHAM.2015.15.6.213
  18. Lehmann, P., Gambazzi, F., Suski, B., Baron, L., Askarinejad, A., Springman, S.M., Holliger, K. and Or, D. 2013. Evolution of soil wetting patterns preceding a hydrologically induced landslide inferred from resistivity survey and point measurements of volumetric water content and pore water pressure. Water Resources Research 49: 7992-8004. https://doi.org/10.1002/2013WR014560
  19. Lora, M., Camporese, M., Troch, P.A. and Salandin, P. 2016. Rainfall-triggered shallow landslides: infiltration dynamics in a physical hillslope model. Hydrological Processes 30: 3239-3251. https://doi.org/10.1002/hyp.10829
  20. Lu, P., Wu, H., Qiao, G., Li, W., Scaioni, M., Feng, T., Liu, S., Chen, W., Li, N., Liu, C., Tong, X., Hong, Y. and Li, R. 2015. Model test study on monitoring dynamic process of slope failure through spatial sensor network. Environmental Earth Sciences 74: 3315-3332. https://doi.org/10.1007/s12665-015-4369-8
  21. Ma, J., Tang, H., Hu, X., Bobet, A., Yong, R. and Ez Eldin, M.A.M. 2017. Bulletin of Engineering Geology and the Environment 76: 323-339. https://doi.org/10.1007/s10064-016-0884-4
  22. Medina-Cetina, Z. and Nadim, F. 2008. Stochastic design of an early warning system. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 2: 223-236. https://doi.org/10.1080/17499510802086777
  23. Mirus, B.B., Morphew, M.D. and Smith, J.B. 2018. Developing hydro-meteorological thresholds for shallow landslide initiation and early warning. Water 10. doi:10.3390/w10091274.
  24. Moriwaki, H., Inokuchi, T., Hattanji, T., Sassa, K., Ochiai, H., Wang, G. 2004. Failure Processes in a Full-scale Landslide Experiment using a Rainfall Simulator. Landslides 1(4): 277-288. https://doi.org/10.1007/s10346-004-0034-0
  25. Osanai, N., Shimizu, T., Kuramoto, K., Kojima, S. and Noro, T. 2010. Japanese early-warning for debris flows and slope failures using rainfall indices with radial basis function network. Landslides 7(3): 325-338. https://doi.org/10.1007/s10346-010-0229-5
  26. Reid, M.E., Baum, R.L., LaHusen, R.G., and Ellis, W.L. 2008. Capturing landslide dynamics and hydrologic triggers using near-real-time monitoring. Landslides and Engineered Slopes: From the Past to the Future. pp. 179-191.
  27. Rossi, M., Peruccacci, S., Brunetti, M.T., Marchesini, I., Luciani, S., Ardizzone, F., Balducci, V., Bianchi, C., Cardinali, M., Fiorucci, F., Mondini, A.C., Reichenbach, P., Salvati, P., Santangelo, M., Bartolini, D., Gariano, S.L., Palladino, M., Vessia, G., Viero, A., Antronico, L., Borselli, L., Deganutti, A.M., Iovine, G., Luino, F., Parise, M., Polemio, M., Guzzetti, F., Luciani, S., Fiorucci, F., Mondini, A.C., Santang, M. and Tonelli, G. 2012. SANF: National warning system for rainfall-induced landslides in Italy. Landslides and Engineered Slopes: Protecting Society through Improved Understanding. pp. 1895-1899.
  28. Sasahara, K. and Sakai, N. 2014. Development of shear deformation due to the increase of pore pressure in a sandy model slope during rainfall. Engineering Geology 170: 43-51. https://doi.org/10.1016/j.enggeo.2013.12.005
  29. Segoni, S., Rosi, A., Fanti, R., Gallucci, A., Monni, A. and Casagli, N. 2018. A regional-scale landslide warning system based on 20 years of operational experience. Water 10. doi:10.3390/w10101297.
  30. Seo, W.G., Choi, J.H., Chae, B.G. and Song, Y.S. 2017. Characteristics of landslide occurrence and change in the matric suction and volumetric water content due to rainfall infiltration. Journal of Engineering Geology 27(4): 475-487. https://doi.org/10.9720/KSEG.2017.4.475
  31. Thiebes, B., Bell, R., Glade, T., Jager, S., Mayer, J., Anderson, M. and Holcombe, L. 2014. Integration of a limitequilibrium model into a landslide early warning system. Landslides 11: 859-875. https://doi.org/10.1007/s10346-013-0416-2
  32. Wu, L.Z., Zhou, Y., Sun, P., Shi, J.S., Liu, G.G. and Bai, L.Y. 2017. Laboratory characterization of rainfall-induced loess slope failure. Catena 150: 1-8. https://doi.org/10.1016/j.catena.2016.11.002
  33. Yuliza, E., Habil, H., Munir, M.M., Irsyam, M., Abdullah, M. and Khairurrijal. 2016. Study of soil moisture sensor for landslide early warning system: experiment in laboratory scale. Journal of Physics: Conference Series 739. doi: 10.1088/1742-6596/739/1/012034.