• Title/Summary/Keyword: eIF4E1

검색결과 846건 처리시간 0.028초

FLAT ROTATIONAL SURFACES WITH POINTWISE 1-TYPE GAUSS MAP IN E4

  • Aksoyak, Ferdag Kahraman;Yayli, Yusuf
    • 호남수학학술지
    • /
    • 제38권2호
    • /
    • pp.305-316
    • /
    • 2016
  • In this paper we study general rotational surfaces in the 4-dimensional Euclidean space $\mathbb{E}^4$ and give a characterization of flat general rotational surface with pointwise 1-type Gauss map. Also, we show that a flat general rotational surface with pointwise 1-type Gauss map is a Lie group if and only if it is a Clifford torus.

Extreme Positive Operators from 2 × 2 to 3 × 3 Hermitian Matrices

  • Moon, Byung Soo
    • 충청수학회지
    • /
    • 제4권1호
    • /
    • pp.11-38
    • /
    • 1991
  • Let $E_n$ be the real ordered space of all $n{\times}n$ Hermitian Matrices and let T be a positive linear operator from $E_2$ to $E_3$. We prove in this paper that T is extreme if and only if T is unitarily equivalent to a map of the form $S_z$ for some $z{\in}C^2$ where $S_z$ is defined by $S_z(xx^*)=ww^*$, $w_i=x_iz_i$ for i = 1, 2 and $w_3=0$.

  • PDF

A FINITE ADDITIVE SET OF IDEMPOTENTS IN RINGS

  • Han, Juncheol;Park, Sangwon
    • Korean Journal of Mathematics
    • /
    • 제21권4호
    • /
    • pp.463-471
    • /
    • 2013
  • Let R be a ring with identity 1, $I(R){\neq}\{0\}$ be the set of all nonunit idempotents in R, and M(R) be the set of all primitive idempotents and 0 of R. We say that I(R) is additive if for all e, $f{\in}I(R)$ ($e{\neq}f$), $e+f{\in}I(R)$. In this paper, the following are shown: (1) I(R) is a finite additive set if and only if $M(R){\backslash}\{0\}$ is a complete set of primitive central idempotents, char(R) = 2 and every nonzero idempotent of R can be expressed as a sum of orthogonal primitive idempotents of R; (2) for a regular ring R such that I(R) is a finite additive set, if the multiplicative group of all units of R is abelian (resp. cyclic), then R is a commutative ring (resp. R is a finite direct product of finite field).

Distribution of Vancomycin-resistant Enterococci Isolates Using a ChromID VRE Agar

  • Lee, Hyun;Yoon, In-Seon
    • 대한임상검사과학회지
    • /
    • 제45권1호
    • /
    • pp.1-4
    • /
    • 2013
  • Vancomycin-resistant enterococci (VRE) have emerged as important healthcare-associated infection since last two decades. ChromID VRE agar (cIDVA) is useful for VRE rectal swab screening. We investigated all VRE were isolated on the cIDVA. A total of 363 rectal swabs of 85 patients to test VRE screening were inoculated into bile-esculin (B-E) broth with $6{\mu}g/mL$ vancomycin. After 24 hours incubation, we subcultured B-E broths were changed to black onto cIDVA. All isolates were identified by the MICROSCAN and VITEK2. The vanA gene and vancomycin minimal inhibition concentration (MIC) were detected by PCR and E-test respectively. 277 E. faecium (84.7%), 16 E. faecalis (4.9%), 25 E. avium (7.6%), 8 E. gallinarum (2.4%) and 1 E. raffinosus (0.3%) were isolated. 10.3% of VRE detected on cIDVA were other than E. faecium and E. faecalis that presented various color from colorless to pale violet. All isolates contained vanA and vancomycin MIC were > $256{\mu}g/mL$. VRE isolates other than E. faecium and E. faecalis should be objective to the contact precautions for healthcare-associated infection control if they possess vanA gene. Due to emerging enterococci carrying vanA such as E. avium, E. gallinarum, and E. raffinosus, VRE surveillance should be expanded to all isolates on chromogenic agar.

  • PDF

배구경기 세터 토스 동작의 운동학적 비교분석 (Kinematic Variables Comparison of Setter Toss Motion on Volleyball According to Toss Types)

  • 정남주;김재필
    • 한국운동역학회지
    • /
    • 제25권1호
    • /
    • pp.57-64
    • /
    • 2015
  • Purpose : The purpose of this study was to analyze setter toss motion kinematically according to toss types. Method : Dependent variables were elapsed time, vertical displacement of the body center, the projected speed of the ball, and differences of the joint angle to the target for four setters positioning. Result : There was no significant difference in the time but the ball contact time was shorter when the toss distance of P3 was longer. There was significant difference in the vertical displacement of COM (p<.05). The vertical displacement of COM showed that the vertical movement gradually decreased when the quick distance was longer. The vertical displacement of COM was difference (p<.05), also there was difference of the ball speed (p<.001) at the Release point(E4). There was significant difference in the knee joint angle at a certain moment among the Release(E4) and Landing point(E5)(p<.05). The hip joint was significant difference among the Apex(E2), Ball Touch(E3), Release(E4), and the Landing point(E5) on the surface(E2, E3, E4 p<.05; E5 p<.005). The shoulder angle was significant difference among the Ball Touch(E3), Release(E4) and the Landing point(E5) on the surface(E3, E4 p<.05; E5 p<.001). The elbow was significant difference in the Apex(E2) (p<.05). The wrist was significant difference in the Release(E4) (p<.05). Conclusion : If we find the clue to expect the direction of the setter's ball, we have to fine the clues in the Apex(E2) that hip join and elbow, Ball Touch(E3) that hip joint and shoulder joint, Release(E4) that wrist, elbow, hip joint, and knee joint.

LIE IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG𝓛

  • LEE, SANG KI;KANG, JOO HO
    • Journal of applied mathematics & informatics
    • /
    • 제36권3_4호
    • /
    • pp.237-244
    • /
    • 2018
  • Let ${\mathcal{H}}$ be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1,e_2,{\cdots}\}$. Let L be the subspace lattice generated by the subspaces $\{[e_1],[e_1,e_2],[e_1,e_2,e_3],{\cdots}\}$ and let $Alg{\mathcal{L}}$ be the algebra of bounded operators which leave invariant all projections in ${\mathcal{L}}$. Let p and q be natural numbers (p < q). Let ${\mathcal{A}}$ be a linear manifold in $Alg{\mathcal{L}}$ such that $T_{(p,q)}=0$ for all T in ${\mathcal{A}}$. If ${\mathcal{A}}$ is a Lie ideal, then $T_{(p,p)}=T_{(p+1,p+1)}={\cdots}=T_{(q,q)}$ and $T_{(i,j)}=0$, $p{\eqslantless}i{\eqslantless}q$ and i < $j{\eqslantless}q$ for all T in ${\mathcal{A}}$.

CMC SURFACES FOLIATED BY ELLIPSES IN EUCLIDEAN SPACE E3

  • Ali, Ahmad Tawfik
    • 호남수학학술지
    • /
    • 제40권4호
    • /
    • pp.701-718
    • /
    • 2018
  • In this paper, we will study the constant mean curvature (CMC) surfaces foliated by ellipses in three dimensional Euclidean space $E^3$. We prove that: (1): Surfaces foliated by ellipses are CMC surfaces if and only if it is a part of generalized cylinder. (2): All surfaces foliated by ellipses are not minimal surfaces. (3): CMC surfaces foliated by ellipses are developable surfaces. (4): CMC surfaces foliated by ellipses are translation surfaces generated by a straight line and plane curve.

SOLVING OPERATOR EQUATIONS Ax = Y AND Ax = y IN ALGL

  • LEE, SANG KI;KANG, JOO HO
    • Journal of applied mathematics & informatics
    • /
    • 제33권3_4호
    • /
    • pp.417-424
    • /
    • 2015
  • In this paper the following is proved: Let L be a subspace lattice on a Hilbert space H and X and Y be operators acting on a Hilbert space H. If XE = EX for each E ${\in}$ L, then there exists an operator A in AlgL such that AX = Y if and only if sup $\left{\frac{\parallel{XEf}\parallel}{\parallel{YEf}\parallel}\;:\;f{\in}H,\;E{\in}L\right}$ = K < $\infty$ and YE=EYE. Let x and y be non-zero vectors in H. Let Px be the orthogonal pro-jection on sp(x). If EPx = PxE for each E $\in$ L, then the following are equivalent. (1) There exists an operator A in AlgL such that Ax = y. (2) < f, Ey > y =< f, Ey > Ey for each E ${\in}$ L and f ${\in}$ H.

Post-transcriptional and post-translational regulation during mouse oocyte maturation

  • Kang, Min-Kook;Han, Seung-Jin
    • BMB Reports
    • /
    • 제44권3호
    • /
    • pp.147-157
    • /
    • 2011
  • The meiotic process from the primordial stage to zygote in female germ cells is mainly adjusted by post-transcriptional regulation of pre-existing maternal mRNA and post-translational modification of proteins. Several key proteins such as the cell cycle regulator, Cdk1/cyclin B, are post-translationally modified for precise control of meiotic progression. The second messenger (cAMP), kinases (PKA, Akt, MAPK, Aurora A, CaMK II, etc), phosphatases (Cdc25, Cdc14), and other proteins (G-protein coupled receptor, phosphodiesterase) are directly or indirectly involved in this process. Many proteins, such as CPEB, maskin, eIF4E, eIF4G, 4E-BP, and 4E-T, post-transcriptionally regulate mRNA via binding to the cap structure at the 5' end of mRNA or its 3' untranslated region (UTR) to generate a closed-loop structure. The 3' UTR of the transcript is also implicated in post-transcriptional regulation through an association with proteins such as CPEB, CPSF, GLD-2, PARN, and Dazl to modulate poly(A) tail length. RNA interfering is a new regulatory mechanism of the amount of mRNA in the mouse oocyte. This review summarizes information about post-transcriptional and post-translational regulation during mouse oocyte meiotic maturation.

ON SEMI-REGULAR INJECTIVE MODULES AND STRONG DEDEKIND RINGS

  • Renchun Qu
    • 대한수학회보
    • /
    • 제60권4호
    • /
    • pp.1071-1083
    • /
    • 2023
  • The main motivation of this paper is to introduce and study the notions of strong Dedekind rings and semi-regular injective modules. Specifically, a ring R is called strong Dedekind if every semi-regular ideal is Q0-invertible, and an R-module E is called a semi-regular injective module provided Ext1R(T, E) = 0 for every 𝓠-torsion module T. In this paper, we first characterize rings over which all semi-regular injective modules are injective, and then study the semi-regular injective envelopes of R-modules. Moreover, we introduce and study the semi-regular global dimensions sr-gl.dim(R) of commutative rings R. Finally, we obtain that a ring R is a DQ-ring if and only if sr-gl.dim(R) = 0, and a ring R is a strong Dedekind ring if and only if sr-gl.dim(R) ≤ 1, if and only if any semi-regular ideal is projective. Besides, we show that the semi-regular dimensions of strong Dedekind rings are at most one.