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SOLVING OPERATOR EQUATIONS AX = Y AND Ax = y IN

ALGL†

SANG KI LEE AND JOO HO KANG∗

Abstract. In this paper the following is proved: Let L be a subspace
lattice on a Hilbert space H and X and Y be operators acting on a Hilbert
space H. If XE = EX for each E ∈ L, then there exists an operator A in

AlgL such that AX = Y if and only if sup

{
∥Y Ef∥
∥XEf∥

: f ∈ H, E ∈ L
}

=

K < ∞ and Y E = EY E.
Let x and y be non-zero vectors in H. Let Px be the orthogonal pro-

jection on sp(x). If EPx = PxE for each E ∈ L, then the following are
equivalent.

(1) There exists an operator A in AlgL such that Ax = y.
(2) < f,Ey > y =< f,Ey > Ey for each E ∈ L and f ∈ H.
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1. Introduction

Interpolation problems have been developed by many mathematicians since
Douglas considered a problem to find a bounded operator A satisfying AX = Y
for two operators X and Y acting on a Hilbert space H in 1966 [1, 2, 3, 4, 5, 6].
Douglas used the range inclusion property of operators to show necessary and
sufficient conditions for the existence of an operator A such that AX = Y . A
condition for the operator A to be a member of A which is a specified subalgebra
of B(H) can be given. In this paper, authors investigated to find sufficient and
necessary conditions that there exists an operator A in AlgL satisfying AX = Y
for operatorsX and Y acting on a Hilbert spaceH and there exists an operator B
in AlgL satisfying Bx = y for two vectors x and y inH. And authors investigated
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the above interpolation problems for finitely or countably many operators and
vectors.

The simplest case of the operator interpolation problem relaxes all restrictions
on A, requiring it simply to be a bounded operator. In this case, the existence
of A is nicely characterized by the well-known factorization theorem of Douglas.

Theorem 1.1 (R.G. Douglas [1]). Let X and Y be bounded operators acting on
a Hilbert space H. Then the following statements are equivalent:

(1) rangeY ∗ ⊆ range X∗

(2) Y ∗Y ≤ λ2X∗X for some λ ≥ 0
(3) there exists a bounded operator A on H so that AX = Y .

Moreover, if (1), (2) and (3) are valid, then there exists a unique operator A so
that

(a) ∥A∥2 = inf{µ : Y ∗Y ≤ µX∗X}
(b) kerY ∗ = kerA∗ and
(c) rangeA∗ ⊆ rangeX−.

We need to look at the proof of Theorem A carefully. Then we know that the

image of A on rangeX
⊥

is 0 from the proof of (3) by (2).

2. The Equation AX = Y in AlgL

Let H be a Hilbert space. A subspace lattice L is a strongly closed lattice
of orthogonal projections on H containing the trivial projections 0 and I. The
symbol AlgL denotes the algebra of bounded operators on H that leave invariant
every projection in L; AlgL is a weakly closed subalgebra of B(H). A lattice L
is a commutative subspace lattice, or CSL, if the projections in L commute; in
this case, AlgL is called a CSL algebra. Let x1, · · · , xn be vectors of H. Then
sp({x1, · · · , xn}) = {α1x1 + α2x2 + · · · + αnxn : α1, α2, · · · , αn ∈ C }. Let

M be a subset of H. Then M means the closure of M and M
⊥

the orthogonal
complement of M . Let N be the set of natural numbers and C be the set of
complex numbers.

Let L be a subspace lattice and A, X and Y be operators acting on a Hilbert
space H such that AX = Y . If XE = EX, then ∥Y Ef∥ = ∥AXEf∥ =
∥AEXf∥ ≤ ∥A∥∥XEf∥ for all E ∈ L and for all f in H. If we adopt the
convention that a fraction whose numerator and denominator are both zero is
equal to zero, then the inequality above may be stated in the form

sup

{
∥Y Ef∥
∥XEf∥

: f ∈ H, E ∈ L
}

≤ ∥A∥.

Theorem 2.1. Let L be a subspace lattice on a Hilbert space H and X and Y
be operators acting on the Hilbert space H. If XE = EX for each E in L, then
the following are equivalent.

(1) There exists an operator A in AlgL such that AX = Y .
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(2) sup

{
∥Y Ef∥
∥XEf∥

: f ∈ H, E ∈ L
}

= K < ∞ and Y E = EY E for each E

in L.

Proof. Assume that sup

{
∥Y Ef∥
∥XEf∥

: f ∈ H, E ∈ L
}

= K < ∞ and Y E = EY E

for each E in L. Then for each E in L, there exists an operator AE in B(H)
such that AE(XE) = Y E = EY E by Theorem A. In particular, if E = I, then
we have an operator AI in B(H) such that AIX = Y . So AE(XE) = AIXE =
EAIXE for each E in L. Since EX = XE for each E ∈ L, AIXE = EAIEX.

Hence AIE = EAIE on rangeX. Let h be in rangeX
⊥
. Since EX = XE for

each E in L, < Eh,Xf >=< h,EXf >=< h,XEf >= 0. So Eh ∈ rangeX
⊥
.

By the definition of AI , (AIE)h = 0 = (EAIE)h. Hence AIE = EAIE on

rangeX
⊥
. So AI is an operator in AlgL. �

Assume that X1, · · · , Xn and Y1, · · · , Yn are operators in B(H) and A is an
operator in AlgL such that AXi = Yi for each i = 1, · · · , n. Then YiEfi =
AXiEfi for each i = 1, · · · , n, E ∈ L and each fi in H. Hence

∥
n∑

i=1

YiEfi∥ = ∥
n∑

i=1

AXiEfi∥

≤ ∥A∥∥
n∑

i=1

XiEfi∥

for all E ∈ L and all fi in H. If, for convenience, we adopt the convention that a
fraction whose numerator and denominator are both zero is equal to zero, then
the inequality above may be stated in the form

sup

{
∥
∑n

i=1 YiEfi∥
∥
∑n

i=1 XiEfi∥
: fi ∈ H, E ∈ L

}
≤ ∥A∥.

Theorem 2.2. Let X1, · · · , Xn and Y1, · · · , Yn be bounded operators acting on
H. If XiE = EXi for each E in L and i in {1, 2, · · · , n}, then the following are
equivalent.

(1) There exists an operator A in AlgL such that AXi = Yi for i = 1, 2, · · · , n.

(2) sup

{
∥
∑n

i=1 YiEfi∥
∥
∑n

i=1 XiEfi∥
: fi ∈ H, E ∈ L

}
= K < ∞ and YiE = EYiE for

each i = 1, · · · , n and E in L.

Proof. Assume that sup

{
∥
∑n

i=1 YiEfi∥
∥
∑n

i=1 XiEfi∥
: fi ∈ H, E ∈ L

}
= K < ∞ and

YiE = EYiE for each i = 1, · · · , n and E ∈ L. Let E be in L and

ME =

{
n∑

i=1

XiEfi : fi ∈ H

}
.
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Define AE : ME → H by AE(
∑n

i=1 XiEfi) =
∑n

i=1 YiEfi. Then AE is well-

defined and bounded linear. Extend AE on ME continuously. Define AEf = 0

for each f ∈ ME
⊥
. Then AE : H → H is a bounded linear and AEEXi = YiE

for i = 1, · · · , n. If E = I, then AIXi = Yi for i = 1, · · · , n. Since EXi = XiE
and YiE = EYiE for each i = 1, · · · , n, AEXiE = AIXiE = AIEXi and
AEXiE = EAIXiE = EAIEXi. Hence AIE = EAIE on ME . Let h be

in ME
⊥
. Then since EXi = XiE for each i = 1, · · · , n, < Eh,Xif >=<

h,EXif >=< h,XiEf >= 0 for each f ∈ H. So⟨
Eh ,

n∑
i=1

Xifi

⟩
= 0 .

By the definition of AI , AIEh = 0 = EAIEh for each E ∈ L. Hence AIE =

EAIE on ME
⊥
. So AI is an operator in AlgL �

We can generalize the above Theorem to the countable case easily.

Theorem 2.3. Let Xi and Yi be bounded operators acting on H for all i =
1, 2, · · · . If XiE = EXi for each E in L and i in N, then the following are
equivalent.

(1) There exists an operator A in AlgL such that AXi = Yi for i = 1, 2, · · · .

(2) sup

{
∥
∑m

i=1 YiEfi∥
∥
∑m

i=1 XiEfi∥
: fi ∈ H, E ∈ L and m ∈ N

}
= K < ∞ and YiE =

EYiE for each i = 1, · · · and E ∈ L.

Proof. Assume that sup

{
∥
∑m

i=1 YiEfi∥
∥
∑m

i=1 XiEfi∥
: fi ∈ H, E ∈ L and m ∈ N

}
= K <

∞ and YiE = EYiE for each i = 1, · · · . Let E be in L and

NE =

{
m∑
i=1

XiEfi : fi ∈ H and m ∈ N

}
.

Define AE : NE → H by AE(
∑m

i=1 XiEfi) =
∑m

i=1 YiEfi. Then AE is well-

defined and bounded linear. Extend AE on NE continuously. Define AEf = 0

for each f ∈ NE
⊥
. Then AE : H → H is a bounded linear and AEEXi =

YiE for i = 1, · · · . If E = I, then AIXi = Yi for i = 1, · · · . Since EXi =
XiE and YiE = EYiE for each i = 1, · · · , AEXiE = AIXiE = AIEXi and

AEXiE = EAIXiE = EAIEXi. Hence AIE = EAIE onNE . Let h be inNE
⊥
.

Then since EXi = XiE for each i = 1, · · · , < Eh,Xif >=< h,EXif >=<
h,XiEf >= 0 for each f ∈ H. So⟨

Eh ,
n∑

i=1

Xifi

⟩
= 0

for each n ∈ N. By the definition of AI , AIEh = 0 = EAIEh for each E ∈ L.
Hence AIE = EAIE on NE

⊥
. So AI is an operator in AlgL. �
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3. The Equation Ax = y in AlgL

Let x and y be non-zero vectors in a Hilbert space H. Let X = x ⊗ y and
Y = y ⊗ y . Then for f in H and E ∈ L,

∥Y Ef∥ = ∥(y ⊗ y)Ef∥
= ∥ < Ef, y > y∥
= ∥ < f,Ey > y∥,

∥XEf∥ = ∥(x⊗ y)Ef∥
= ∥ < Ef, y > x∥
= ∥ < f,Ey > x∥.

If for convenience, we adopt the convention that a fraction whose numerator and
denominator are both zero is equal to zero, then for f in H and E ∈ L,

∥Y Ef∥
∥XEf∥

=
∥ < f,Ey > y∥
∥ < f,Ey > x∥

is
∥y∥
∥x∥

or 0 .

Hence sup

{
∥Y Ef∥
∥XEf∥

: f ∈ H and E ∈ L
}

=
∥y∥
∥x∥ ,

Y Ef =< f,Ey > y and

EY Ef =< f,Ey > Ey for each f in H and each E ∈ L.

We can obtain the following theorem by Theorem 2.1.

Theorem 3.1. Let L be a subspace lattice on H and let x and y be non-zero
vectors in H. Let Px be the orthogonal projection on sp(x). If EPx = PxE for
each E ∈ L, then the following are equivalent.

(1) There exists an operator A in AlgL such that Ax = y.
(2) < f,Ey > y =< f,Ey > Ey for each E ∈ L and f ∈ H.

Let xi, yi(i = 1, · · · , n) be non-zero vectors in H. Let Xi = xi ⊗ yi and
Yi = yi ⊗ yi. Then for fi in H and E ∈ L

∥
n∑

i=1

YiEfi∥ = ∥
n∑

i=1

(yi ⊗ yi)Efi∥

= ∥
n∑

i=1

< Efi, yi > yi∥

= ∥
n∑

i=1

< fi, Eyi > yi∥,

∥
n∑

i=1

XiEfi∥ = ∥
n∑

i=1

(xi ⊗ yi)Efi∥
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= ∥
n∑

i=1

< Efi, yi > xi∥

= ∥
n∑

i=1

< fi, Eyi > xi∥.

Hence
∥
∑n

i=1 YiEfi∥
∥
∑n

i=1 XiEfi∥
=

∥
∑n

i=1 < fi, Eyi > yi∥
∥
∑n

i=1 < fi, Eyi > xi∥
and YiEf =< f,Eyi > yi and

< EYiEf >=< f,Eyi > Eyi for each E ∈ L, f ∈ H and i = 1, · · · , n.

We can obtain the following theorem by Theorem 2.2.

Theorem 3.2. Let L be a subspace lattice on H and let x1, · · · , xn and y1, · · · , yn
be vectors in H. Let Pxi be the orthogonal projection on sp(xi). If EPxi = PxiE
for each E ∈ L and i = 1, · · · , n, then the following are equivalent.

(1) There exists an operator A in AlgL such that Axi = yi for i = 1, 2, · · · , n.

(2) sup

{
∥
∑n

i=1 < fi, Eyi > yi∥
∥
∑n

i=1 < fi, Eyi > xi∥
: fi ∈ H, E ∈ L

}
= K0 < ∞ and

< f,Eyi > yi =< f,Eyi > Eyi for each E ∈ L, f ∈ H and i = 1, · · · , n.

We can extend Theorem 3.2 to countably infinite vectors and get the following
theorem from Theorem 2.3.

Theorem 3.3. Let L be a subspace lattice on H and let {xi} and {yi} be vectors
in H for i ∈ N. Let Pxi be the orthogonal projection on sp(xi). If EPxi = PxiE
for each E ∈ L and i = 1, 2, · · · , then the following are equivalent.

(1) There exists an operator A in AlgL such that Axi = yi for i = 1, 2, · · · .

(2) sup

{
∥
∑n

i=1 < fi, Eyi > yi∥
∥
∑n

i=1 < fi, Eyi > xi∥
: fi ∈ H, E ∈ L, n ∈ N

}
= K0 < ∞ and

< f,Eyi > yi =< f,Eyi > Eyi for each E ∈ L, f ∈ H and i = 1, 2, · · · .

Theorem 3.4. Let L be a subspace lattice on a Hilbert space H and x and y be
vectors in H. Let Px be the orthogonal projection on sp(x). If EPx = PxE for

each E ∈ L and sup

{
∥Ey∥
∥Ex∥

: E ∈ L
}

= K < ∞, then there exists an operator

A in AlgL such that Ax = y.

Proof. Assume that sup

{
∥Ey∥
∥Ex∥

: E ∈ L
}

= K < ∞. Then for each E in L,

there exists an operator AE in B(H) such that AEEx = Ey by Theorem 1.1. In
particular, if E = I, then we have an operator AI in B(H) such that AIx = y.
Let’s put AI = A. So AEEx = Ey = EAx for each E ∈ L. Hence AEE = EA on

sp(x). Let h be in sp(x)
⊥
. Since EPx = PxE for each E ∈ L, < Eh,Ex >=<

h,Ex >=< h,EPxx >=< h,PxEx >= 0. Hence Eh ∈ sp(Ex)
⊥
. By the

definition of AE and A, AEEh = 0 = EAh for each E in L. Hence AEE = EA
on H for each E in L. So A = EA. Therefore A is in AlgL. �
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Theorem 3.5. Let L be a subspace lattice on a Hilbert space H and x1, · · · , xn

and y1, · · · , yn be vectors in H. Let Pxi be the orthogonal projection on sp(xi).
If EPxi = PxiE for each E ∈ L and i = 1, · · · , n and

sup

{
∥E(

∑n
i=1 αiyi)∥

∥E(
∑n

i=1 αixi)∥
: E ∈ L, αi ∈ C

}
< ∞,

then there exists an operator A in AlgL such that Axi = yi for i = 1, · · · , n.

Proof. Assume that sup

{
∥E(

∑n
i=1 αiyi)∥

∥E(
∑n

i=1 αixi)∥
: E ∈ L, αi ∈ C

}
< ∞. Let E be

in L. Define AE : sp({Ex1, · · · , Exn}) → H by AE(
∑n

i=1 αiExi) =
(
∑n

i=1 αiEyi). Then AE is well-defined and bounded linear. Define AEf = 0

for each f ∈ sp({Ex1, · · · , Exn})⊥. Then AE : H → H is bounded linear and
AEExi = Eyi for i = 1, · · · , n. If E = I, then AIxi = yi for i = 1, · · · , n. Let’s
put AI = A. So AEExi = Eyi = EAxi for each E ∈ L. Hence AEE = EA

on sp({x1, · · · , xn}). Let h be in sp({x1, · · · , xn})⊥. Since < Eh,Exi >=<

h,Exi >= 0, < Eh,
∑n

i=1 Exi >= 0. So Eh ∈ sp({Ex1, · · · , Exn})⊥. By the
definition of AE and A, AEEh = 0 = EAh for each E in L. Hence AEE = EA
on H for each E in L. So A = EA. Therefore A is in AlgL. �

We ca generalize the above theorem for countable case.

Theorem 3.6. Let L be a subspace lattice on a Hilbert space H and {xi} and
{yi} be vectors in H. Let Pxi be the orthogonal projection on sp(xi) for each
i = 1, 2, · · · . If EPxi = PxiE for each E ∈ L and i = 1, 2, · · · and

sup

{
∥E(

∑n
i=1 αiyi)∥

∥E(
∑n

i=1 αixi)∥
: E ∈ L, αi ∈ C, n ∈ N

}
< ∞,

then there exists an operator A in AlgL such that Axi = yi for i = 1, 2, · · · .
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