SOLVING OPERATOR EQUATIONS $A X=Y$ AND $A x=y$ IN ALG \mathcal{L}^{\dagger}

SANG KI LEE AND JOO HO KANG*

Abstract

In this paper the following is proved: Let \mathcal{L} be a subspace lattice on a Hilbert space \mathcal{H} and X and Y be operators acting on a Hilbert space \mathcal{H}. If $X E=E X$ for each $E \in \mathcal{L}$, then there exists an operator A in $\operatorname{Alg} \mathcal{L}$ such that $A X=Y$ if and only if $\sup \left\{\frac{\|Y E f\|}{\|X E f\|}: f \in \mathcal{H}, E \in \mathcal{L}\right\}=$ $K<\infty$ and $Y E=E Y E$.

Let x and y be non-zero vectors in \mathcal{H}. Let P_{x} be the orthogonal projection on $\operatorname{sp}(x)$. If $E P_{x}=P_{x} E$ for each $E \in \mathcal{L}$, then the following are equivalent. (1) There exists an operator A in $\operatorname{Alg} \mathcal{L}$ such that $A x=y$. (2) $<f, E y>y=<f, E y>E y$ for each $E \in \mathcal{L}$ and $f \in \mathcal{H}$.

AMS Mathematics Subject Classification: 47L35.
Key word and phrases: Interpolation Problem, Subspace Lattice, $\operatorname{Alg} \mathcal{L}$, CSL-Alg \mathcal{L}.

1. Introduction

Interpolation problems have been developed by many mathematicians since Douglas considered a problem to find a bounded operator A satisfying $A X=Y$ for two operators X and Y acting on a Hilbert space \mathcal{H} in 1966 [1, 2, 3, 4, 5, 6]. Douglas used the range inclusion property of operators to show necessary and sufficient conditions for the existence of an operator A such that $A X=Y$. A condition for the operator A to be a member of \mathcal{A} which is a specified subalgebra of $\mathcal{B}(\mathcal{H})$ can be given. In this paper, authors investigated to find sufficient and necessary conditions that there exists an operator A in $\operatorname{Alg} \mathcal{L}$ satisfying $A X=Y$ for operators X and Y acting on a Hilbert space \mathcal{H} and there exists an operator B in $\operatorname{Alg} \mathcal{L}$ satisfying $B x=y$ for two vectors x and y in \mathcal{H}. And authors investigated

[^0]the above interpolation problems for finitely or countably many operators and vectors.

The simplest case of the operator interpolation problem relaxes all restrictions on A, requiring it simply to be a bounded operator. In this case, the existence of A is nicely characterized by the well-known factorization theorem of Douglas.

Theorem 1.1 (R.G. Douglas [1]). Let X and Y be bounded operators acting on a Hilbert space \mathcal{H}. Then the following statements are equivalent:
(1) range $Y^{*} \subseteq$ range X^{*}
(2) $Y^{*} Y \leq \lambda^{2} X^{*} X$ for some $\lambda \geq 0$
(3) there exists a bounded operator A on \mathcal{H} so that $A X=Y$.

Moreover, if (1), (2) and (3) are valid, then there exists a unique operator A so that
(a) $\|A\|^{2}=\inf \left\{\mu: Y^{*} Y \leq \mu X^{*} X\right\}$
(b) $\operatorname{ker} Y^{*}=\operatorname{ker} A^{*}$ and
(c) range $A^{*} \subseteq$ range X^{-}.

We need to look at the proof of Theorem A carefully. Then we know that the image of A on $\overline{\text { range } X^{\perp}}$ is 0 from the proof of (3) by (2).

2. The Equation $A X=Y$ in $\operatorname{Alg} \mathcal{L}$

Let \mathcal{H} be a Hilbert space. A subspace lattice \mathcal{L} is a strongly closed lattice of orthogonal projections on \mathcal{H} containing the trivial projections 0 and I. The symbol $\operatorname{Alg} \mathcal{L}$ denotes the algebra of bounded operators on \mathcal{H} that leave invariant every projection in $\mathcal{L} ; \operatorname{Alg} \mathcal{L}$ is a weakly closed subalgebra of $\mathcal{B}(\mathcal{H})$. A lattice \mathcal{L} is a commutative subspace lattice, or CSL, if the projections in \mathcal{L} commute; in this case, $\operatorname{Alg} \mathcal{L}$ is called a $C S L$ algebra. Let x_{1}, \cdots, x_{n} be vectors of \mathcal{H}. Then $\operatorname{sp}\left(\left\{x_{1}, \cdots, x_{n}\right\}\right)=\left\{\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n}: \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in \mathbb{C}\right\}$. Let M be a subset of \mathcal{H}. Then \bar{M} means the closure of M and \bar{M}^{\perp} the orthogonal complement of \bar{M}. Let \mathbb{N} be the set of natural numbers and \mathbb{C} be the set of complex numbers.

Let \mathcal{L} be a subspace lattice and A, X and Y be operators acting on a Hilbert space \mathcal{H} such that $A X=Y$. If $X E=E X$, then $\|Y E f\|=\|A X E f\|=$ $\|A E X f\| \leq\|A\|\|X E f\|$ for all $E \in \mathcal{L}$ and for all f in \mathcal{H}. If we adopt the convention that a fraction whose numerator and denominator are both zero is equal to zero, then the inequality above may be stated in the form

$$
\sup \left\{\frac{\|Y E f\|}{\|X E f\|}: f \in \mathcal{H}, E \in \mathcal{L}\right\} \leq\|A\|
$$

Theorem 2.1. Let \mathcal{L} be a subspace lattice on a Hilbert space \mathcal{H} and X and Y be operators acting on the Hilbert space \mathcal{H}. If $X E=E X$ for each E in \mathcal{L}, then the following are equivalent.
(1) There exists an operator A in $\operatorname{Alg\mathcal {L}}$ such that $A X=Y$.
(2) $\sup \left\{\frac{\|Y E f\|}{\|X E f\|}: f \in \mathcal{H}, E \in \mathcal{L}\right\}=K<\infty$ and $Y E=E Y E$ for each E in \mathcal{L}.
Proof. Assume that $\sup \left\{\frac{\|Y E f\|}{\|X E f\|}: f \in \mathcal{H}, E \in \mathcal{L}\right\}=K<\infty$ and $Y E=E Y E$ for each E in \mathcal{L}. Then for each E in \mathcal{L}, there exists an operator A_{E} in $\mathcal{B}(\mathcal{H})$ such that $A_{E}(X E)=Y E=E Y E$ by Theorem A. In particular, if $E=I$, then we have an operator A_{I} in $\mathcal{B}(\mathcal{H})$ such that $A_{I} X=Y$. So $A_{E}(X E)=A_{I} X E=$ $E A_{I} X E$ for each E in \mathcal{L}. Since $E X=X E$ for each $E \in \mathcal{L}, A_{I} X E=E A_{I} E X$. Hence $A_{I} E=E A_{I} E$ on $\overline{\text { rangeX }}$. Let h be in $\overline{\text { rangeX }}^{\perp}$. Since $E X=X E$ for each E in $\mathcal{L},<E h, X f>=<h, E X f>=<h, X E f>=0$. So $E h \in \overline{\text { range }}^{\perp}$. By the definition of $A_{I},\left(A_{I} E\right) h=0=\left(E A_{I} E\right) h$. Hence $A_{I} E=E A_{I} E$ on $\overline{\text { rangeX }}{ }^{\perp}$. So A_{I} is an operator in $\operatorname{Alg} \mathcal{L}$.

Assume that X_{1}, \cdots, X_{n} and Y_{1}, \cdots, Y_{n} are operators in $\mathcal{B}(\mathcal{H})$ and A is an operator in $\operatorname{Alg} \mathcal{L}$ such that $A X_{i}=Y_{i}$ for each $i=1, \cdots, n$. Then $Y_{i} E f_{i}=$ $A X_{i} E f_{i}$ for each $i=1, \cdots, n, E \in \mathcal{L}$ and each f_{i} in \mathcal{H}. Hence

$$
\begin{aligned}
\left\|\sum_{i=1}^{n} Y_{i} E f_{i}\right\| & =\left\|\sum_{i=1}^{n} A X_{i} E f_{i}\right\| \\
& \leq\|A\|\left\|\sum_{i=1}^{n} X_{i} E f_{i}\right\|
\end{aligned}
$$

for all $E \in \mathcal{L}$ and all f_{i} in \mathcal{H}. If, for convenience, we adopt the convention that a fraction whose numerator and denominator are both zero is equal to zero, then the inequality above may be stated in the form

$$
\sup \left\{\frac{\left\|\sum_{i=1}^{n} Y_{i} E f_{i}\right\|}{\left\|\sum_{i=1}^{n} X_{i} E f_{i}\right\|}: f_{i} \in \mathcal{H}, E \in \mathcal{L}\right\} \leq\|A\|
$$

Theorem 2.2. Let X_{1}, \cdots, X_{n} and Y_{1}, \cdots, Y_{n} be bounded operators acting on \mathcal{H}. If $X_{i} E=E X_{i}$ for each E in \mathcal{L} and i in $\{1,2, \cdots, n\}$, then the following are equivalent.
(1) There exists an operator A in $\operatorname{Alg\mathcal {L}}$ such that $A X_{i}=Y_{i}$ for $i=1,2, \cdots, n$.
(2) $\sup \left\{\frac{\left\|\sum_{i=1}^{n} Y_{i} E f_{i}\right\|}{\left\|\sum_{i=1}^{n} X_{i} E f_{i}\right\|}: f_{i} \in \mathcal{H}, E \in \mathcal{L}\right\}=K<\infty$ and $Y_{i} E=E Y_{i} E$ for each $i=1, \cdots, n$ and E in \mathcal{L}.

Proof. Assume that $\sup \left\{\frac{\left\|\sum_{i=1}^{n} Y_{i} E f_{i}\right\|}{\left\|\sum_{i=1}^{n} X_{i} E f_{i}\right\|}: f_{i} \in \mathcal{H}, E \in \mathcal{L}\right\}=K<\infty$ and $Y_{i} E=E Y_{i} E$ for each $i=1, \cdots, n$ and $E \in \mathcal{L}$. Let E be in \mathcal{L} and

$$
\mathcal{M}_{E}=\left\{\sum_{i=1}^{n} X_{i} E f_{i}: f_{i} \in \mathcal{H}\right\}
$$

Define $A_{E}: \mathcal{M}_{E} \rightarrow \mathcal{H}$ by $A_{E}\left(\sum_{i=1}^{n} X_{i} E f_{i}\right)=\sum_{i=1}^{n} Y_{i} E f_{i}$. Then A_{E} is welldefined and bounded linear. Extend A_{E} on $\overline{\mathcal{M}_{E}}$ continuously. Define $A_{E} f=0$ for each $f \in{\overline{\mathcal{M}_{E}}}^{\perp}$. Then $A_{E}: \mathcal{H} \rightarrow \mathcal{H}$ is a bounded linear and $A_{E} E X_{i}=Y_{i} E$ for $i=1, \cdots, n$. If $E=I$, then $A_{I} X_{i}=Y_{i}$ for $i=1, \cdots, n$. Since $E X_{i}=X_{i} E$ and $Y_{i} E=E Y_{i} E$ for each $i=1, \cdots, n, A_{E} X_{i} E=A_{I} X_{i} E=A_{I} E X_{i}$ and $A_{E} X_{i} E=E A_{I} X_{i} E=E A_{I} E X_{i}$. Hence $A_{I} E=E A_{I} E$ on $\overline{\mathcal{M}_{E}}$. Let h be in ${\overline{\mathcal{M}_{E}}}^{\perp}$. Then since $E X_{i}=X_{i} E$ for each $i=1, \cdots, n,<E h, X_{i} f>=<$ $h, E X_{i} f>=<h, X_{i} E f>=0$ for each $f \in \mathcal{H}$. So

$$
\left\langle E h, \sum_{i=1}^{n} X_{i} f_{i}\right\rangle=0
$$

By the definition of $A_{I}, A_{I} E h=0=E A_{I} E h$ for each $E \in \mathcal{L}$. Hence $A_{I} E=$ $E A_{I} E$ on ${\overline{\mathcal{M}_{E}}}^{\perp}$. So A_{I} is an operator in $\operatorname{Alg} \mathcal{L}$

We can generalize the above Theorem to the countable case easily.
Theorem 2.3. Let X_{i} and Y_{i} be bounded operators acting on \mathcal{H} for all $i=$ $1,2, \cdots$. If $X_{i} E=E X_{i}$ for each E in \mathcal{L} and i in \mathbb{N}, then the following are equivalent.
(1) There exists an operator A in Alg \mathcal{L} such that $A X_{i}=Y_{i}$ for $i=1,2, \cdots$.
(2) $\sup \left\{\frac{\left\|\sum_{i=1}^{m} Y_{i} E f_{i}\right\|}{\left\|\sum_{i=1}^{m} X_{i} E f_{i}\right\|}: f_{i} \in \mathcal{H}, E \in \mathcal{L}\right.$ and $\left.m \in \mathbb{N}\right\}=K<\infty$ and $Y_{i} E=$ $E Y_{i} E$ for each $i=1, \cdots$ and $E \in \mathcal{L}$.
Proof. Assume that $\sup \left\{\frac{\left\|\sum_{i=1}^{m} Y_{i} E f_{i}\right\|}{\left\|\sum_{i=1}^{m} X_{i} E f_{i}\right\|}: f_{i} \in \mathcal{H}, E \in \mathcal{L}\right.$ and $\left.m \in \mathbb{N}\right\}=K<$ ∞ and $Y_{i} E=E Y_{i} E$ for each $i=1, \cdots$. Let E be in \mathcal{L} and

$$
\mathcal{N}_{E}=\left\{\sum_{i=1}^{m} X_{i} E f_{i}: f_{i} \in \mathcal{H} \text { and } m \in \mathbb{N}\right\}
$$

Define $A_{E}: \mathcal{N}_{E} \rightarrow \mathcal{H}$ by $A_{E}\left(\sum_{i=1}^{m} X_{i} E f_{i}\right)=\sum_{i=1}^{m} Y_{i} E f_{i}$. Then A_{E} is welldefined and bounded linear. Extend A_{E} on $\overline{\mathcal{N}_{E}}$ continuously. Define $A_{E} f=0$ for each $f \in{\overline{\mathcal{N}_{E}}}^{\perp}$. Then $A_{E}: \mathcal{H} \rightarrow \mathcal{H}$ is a bounded linear and $A_{E} E X_{i}=$ $Y_{i} E$ for $i=1, \cdots$. If $E=I$, then $A_{I} X_{i}=Y_{i}$ for $i=1, \cdots$. Since $E X_{i}=$ $X_{i} E$ and $Y_{i} E=E Y_{i} E$ for each $i=1, \cdots, A_{E} X_{i} E=A_{I} X_{i} E=A_{I} E X_{i}$ and $A_{E} X_{i} E=E A_{I} X_{i} E=E A_{I} E X_{i}$. Hence $A_{I} E=E A_{I} E$ on $\overline{\mathcal{N}_{E}}$. Let h be in ${\overline{\mathcal{N}_{E}}}^{\perp}$. Then since $E X_{i}=X_{i} E$ for each $i=1, \cdots,<E h, X_{i} f>=<h, E X_{i} f>=<$ $h, X_{i} E f>=0$ for each $f \in \mathcal{H}$. So

$$
\left\langle E h, \sum_{i=1}^{n} X_{i} f_{i}\right\rangle=0
$$

for each $n \in \mathbb{N}$. By the definition of $A_{I}, A_{I} E h=0=E A_{I} E h$ for each $E \in \mathcal{L}$. Hence $A_{I} E=E A_{I} E$ on ${\overline{\mathcal{N}_{E}}}^{\perp}$. So A_{I} is an operator in $\operatorname{Alg} \mathcal{L}$.

3. The Equation $A x=y$ in $\operatorname{Alg} \mathcal{L}$

Let x and y be non-zero vectors in a Hilbert space \mathcal{H}. Let $X=x \otimes y$ and $Y=y \otimes y$. Then for f in \mathcal{H} and $E \in \mathcal{L}$,

$$
\begin{aligned}
\|Y E f\| & =\|(y \otimes y) E f\| \\
& =\|<E f, y>y\| \\
& =\|<f, E y>y\| \\
\|X E f\| & =\|(x \otimes y) E f\| \\
& =\|<E f, y>x\| \\
& =\|<f, E y>x\|
\end{aligned}
$$

If for convenience, we adopt the convention that a fraction whose numerator and denominator are both zero is equal to zero, then for f in \mathcal{H} and $E \in \mathcal{L}$,

$$
\frac{\|Y E f\|}{\|X E f\|}=\frac{\|<f, E y>y\|}{\|<f, E y>x\|}
$$

is

$$
\frac{\|y\|}{\|x\|} \text { or } 0
$$

Hence $\sup \left\{\frac{\|Y E f\|}{\|X E f\|}: f \in \mathcal{H}\right.$ and $\left.E \in \mathcal{L}\right\}=\frac{\|y\|}{\|x\|}, Y E f=<f, E y>y$ and $E Y E f=<f, E y>E y$ for each f in \mathcal{H} and each $E \in \mathcal{L}$.

We can obtain the following theorem by Theorem 2.1.
Theorem 3.1. Let \mathcal{L} be a subspace lattice on \mathcal{H} and let x and y be non-zero vectors in \mathcal{H}. Let P_{x} be the orthogonal projection on $\operatorname{sp}(x)$. If $E P_{x}=P_{x} E$ for each $E \in \mathcal{L}$, then the following are equivalent.
(1) There exists an operator A in Alg \mathcal{L} such that $A x=y$.
(2) $<f, E y>y=<f, E y>E y$ for each $E \in \mathcal{L}$ and $f \in \mathcal{H}$.

Let $x_{i}, y_{i}(i=1, \cdots, n)$ be non-zero vectors in \mathcal{H}. Let $X_{i}=x_{i} \otimes y_{i}$ and $Y_{i}=y_{i} \otimes y_{i}$. Then for f_{i} in \mathcal{H} and $E \in \mathcal{L}$

$$
\begin{aligned}
\left\|\sum_{i=1}^{n} Y_{i} E f_{i}\right\| & =\left\|\sum_{i=1}^{n}\left(y_{i} \otimes y_{i}\right) E f_{i}\right\| \\
& =\left\|\sum_{i=1}^{n}<E f_{i}, y_{i}>y_{i}\right\| \\
& =\left\|\sum_{i=1}^{n}<f_{i}, E y_{i}>y_{i}\right\| \\
\left\|\sum_{i=1}^{n} X_{i} E f_{i}\right\| & =\left\|\sum_{i=1}^{n}\left(x_{i} \otimes y_{i}\right) E f_{i}\right\|
\end{aligned}
$$

$$
\begin{aligned}
& =\left\|\sum_{i=1}^{n}<E f_{i}, y_{i}>x_{i}\right\| \\
& =\left\|\sum_{i=1}^{n}<f_{i}, E y_{i}>x_{i}\right\| .
\end{aligned}
$$

Hence $\frac{\left\|\sum_{i=1}^{n} Y_{i} E f_{i}\right\|}{\left\|\sum_{i=1}^{n} X_{i} E f_{i}\right\|}=\frac{\left\|\sum_{i=1}^{n}<f_{i}, E y_{i}>y_{i}\right\|}{\left\|\sum_{i=1}^{n}<f_{i}, E y_{i}>x_{i}\right\|}$ and $Y_{i} E f=<f, E y_{i}>y_{i}$ and $<E Y_{i} E f>=<f, E y_{i}>E y_{i}$ for each $E \in \mathcal{L}, f \in \mathcal{H}$ and $i=1, \cdots, n$.

We can obtain the following theorem by Theorem 2.2.
Theorem 3.2. Let \mathcal{L} be a subspace lattice on \mathcal{H} and let x_{1}, \cdots, x_{n} and y_{1}, \cdots, y_{n} be vectors in \mathcal{H}. Let $P_{x_{i}}$ be the orthogonal projection on $\operatorname{sp}\left(x_{i}\right)$. If $E P_{x_{i}}=P_{x_{i}} E$ for each $E \in \mathcal{L}$ and $i=1, \cdots, n$, then the following are equivalent.
(1) There exists an operator A in Alg \mathcal{L} such that $A x_{i}=y_{i}$ for $i=1,2, \cdots, n$.
(2) $\sup \left\{\frac{\left\|\sum_{i=1}^{n}<f_{i}, E y_{i}>y_{i}\right\|}{\left\|\sum_{i=1}^{n}<f_{i}, E y_{i}>x_{i}\right\|}: f_{i} \in \mathcal{H}, E \in \mathcal{L}\right\}=K_{0}<\infty$ and
$<f, E y_{i}>y_{i}=<f, E y_{i}>E y_{i}$ for each $E \in \mathcal{L}, f \in \mathcal{H}$ and $i=1, \cdots, n$.
We can extend Theorem 3.2 to countably infinite vectors and get the following theorem from Theorem 2.3.

Theorem 3.3. Let \mathcal{L} be a subspace lattice on \mathcal{H} and let $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ be vectors in \mathcal{H} for $i \in \mathbb{N}$. Let $P_{x_{i}}$ be the orthogonal projection on $\operatorname{sp}\left(x_{i}\right)$. If $E P_{x_{i}}=P_{x_{i}} E$ for each $E \in \mathcal{L}$ and $i=1,2, \cdots$, then the following are equivalent.
(1) There exists an operator A in Alg \mathcal{L} such that $A x_{i}=y_{i}$ for $i=1,2, \cdots$.
(2) $\sup \left\{\frac{\left\|\sum_{i=1}^{n}<f_{i}, E y_{i}>y_{i}\right\|}{\left\|\sum_{i=1}^{n}<f_{i}, E y_{i}>x_{i}\right\|}: f_{i} \in \mathcal{H}, E \in \mathcal{L}, n \in \mathbb{N}\right\}=K_{0}<\infty$ and $<f, E y_{i}>y_{i}=<f, E y_{i}>E y_{i}$ for each $E \in \mathcal{L}, f \in \mathcal{H}$ and $i=1,2, \cdots$.

Theorem 3.4. Let \mathcal{L} be a subspace lattice on a Hilbert space \mathcal{H} and x and y be vectors in \mathcal{H}. Let P_{x} be the orthogonal projection on $\operatorname{sp}(x)$. If $E P_{x}=P_{x} E$ for each $E \in \mathcal{L}$ and $\sup \left\{\frac{\|E y\|}{\|E x\|}: E \in \mathcal{L}\right\}=K<\infty$, then there exists an operator A in $\operatorname{Alg} \mathcal{L}$ such that $A x=y$.
Proof. Assume that $\sup \left\{\frac{\|E y\|}{\|E x\|}: E \in \mathcal{L}\right\}=K<\infty$. Then for each E in \mathcal{L}, there exists an operator A_{E} in $\mathcal{B}(\mathcal{H})$ such that $A_{E} E x=E y$ by Theorem 1.1. In particular, if $E=I$, then we have an operator A_{I} in $\mathcal{B}(\mathcal{H})$ such that $A_{I} x=y$. Let's put $A_{I}=A$. So $A_{E} E x=E y=E A x$ for each $E \in \mathcal{L}$. Hence $A_{E} E=E A$ on $s p(x)$. Let h be in $s p(x)^{\perp}$. Since $E P_{x}=P_{x} E$ for each $E \in \mathcal{L},<E h, E x>=<$ $h, E x>=<h, E P_{x} x>=<h, P_{x} E x>=0$. Hence $E h \in s p(E x)^{\perp}$. By the definition of A_{E} and $A, A_{E} E h=0=E A h$ for each E in \mathcal{L}. Hence $A_{E} E=E A$ on \mathcal{H} for each E in \mathcal{L}. So $A=E A$. Therefore A is in $\operatorname{Alg} \mathcal{L}$.

Theorem 3.5. Let \mathcal{L} be a subspace lattice on a Hilbert space \mathcal{H} and x_{1}, \cdots, x_{n} and y_{1}, \cdots, y_{n} be vectors in \mathcal{H}. Let $P_{x_{i}}$ be the orthogonal projection on $s p\left(x_{i}\right)$. If $E P_{x_{i}}=P_{x_{i}} E$ for each $E \in \mathcal{L}$ and $i=1, \cdots, n$ and

$$
\sup \left\{\frac{\left\|E\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\right)\right\|}{\left\|E\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)\right\|}: E \in \mathcal{L}, \alpha_{i} \in \mathbb{C}\right\}<\infty,
$$

then there exists an operator A in $\operatorname{Alg} \mathcal{L}$ such that $A x_{i}=y_{i}$ for $i=1, \cdots, n$.
Proof. Assume that $\sup \left\{\frac{\left\|E\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\right)\right\|}{\left\|E\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)\right\|}: E \in \mathcal{L}, \alpha_{i} \in \mathbb{C}\right\}<\infty$. Let E be in \mathcal{L}. Define $A_{E}: \operatorname{sp}\left(\left\{E x_{1}, \cdots, E x_{n}\right\}\right) \rightarrow \mathcal{H}$ by $A_{E}\left(\sum_{i=1}^{n} \alpha_{i} E x_{i}\right)=$ $\left(\sum_{i=1}^{n} \alpha_{i} E y_{i}\right)$. Then A_{E} is well-defined and bounded linear. Define $A_{E} f=0$ for each $f \in \operatorname{sp}\left(\left\{E x_{1}, \cdots, E x_{n}\right\}\right)^{\perp}$. Then $A_{E}: \mathcal{H} \rightarrow \mathcal{H}$ is bounded linear and $A_{E} E x_{i}=E y_{i}$ for $i=1, \cdots, n$. If $E=I$, then $A_{I} x_{i}=y_{i}$ for $i=1, \cdots, n$. Let's put $A_{I}=A$. So $A_{E} E x_{i}=E y_{i}=E A x_{i}$ for each $E \in \mathcal{L}$. Hence $A_{E} E=E A$ on $\operatorname{sp}\left(\left\{x_{1}, \cdots, x_{n}\right\}\right)$. Let h be in $\operatorname{sp}\left(\left\{x_{1}, \cdots, x_{n}\right\}\right)^{\perp}$. Since $<E h, E x_{i}>=<$ $h, E x_{i}>=0,<E h, \sum_{i=1}^{n} E x_{i}>=0$. So $E h \in \operatorname{sp}\left(\left\{E x_{1}, \cdots, E x_{n}\right\}\right)^{\perp}$. By the definition of A_{E} and $A, A_{E} E h=0=E A h$ for each E in \mathcal{L}. Hence $A_{E} E=E A$ on \mathcal{H} for each E in \mathcal{L}. So $A=E A$. Therefore A is in $\operatorname{Alg} \mathcal{L}$.

We ca generalize the above theorem for countable case.
Theorem 3.6. Let \mathcal{L} be a subspace lattice on a Hilbert space \mathcal{H} and $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ be vectors in \mathcal{H}. Let $P_{x_{i}}$ be the orthogonal projection on $s p\left(x_{i}\right)$ for each $i=1,2, \cdots$. If $E P_{x_{i}}=P_{x_{i}} E$ for each $E \in \mathcal{L}$ and $i=1,2, \cdots$ and

$$
\sup \left\{\frac{\left\|E\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\right)\right\|}{\left\|E\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)\right\|}: E \in \mathcal{L}, \alpha_{i} \in \mathbb{C}, n \in \mathbb{N}\right\}<\infty
$$

then there exists an operator A in $\operatorname{Alg} \mathcal{L}$ such that $A x_{i}=y_{i}$ for $i=1,2, \cdots$.

References

1. R.G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415.
2. Y.S. Jo and J.H. Kang, Interpolation problems in CSL-algebras AlgL , Rocky Mountain J. of Math. 33 (2003), 903 - 914.
3. Y.S. Jo and J.H. Kang, Interpolation problems in AlgL,$~ J . ~ A p p l . ~ M a t h . ~ \& ~ C o m p u t i n g ~ 18 ~ 8 ~$ (2005), 513-524.
4. Y.S. Jo, J.H. Kang and K.S. Kim, On operator interpolation problems, J. Korean Math. Soc. 41 (2004), 423-433.
5. Y.S. Jo, J.H. Kang, R.L. Moore and T.T. Trent, Interpolation in self-adjoint settings, Proc. Amer. Math. Soc. 130, 3269-3281.
6. J.H. Kang, Compact interpolation on $A X=Y$ in Alg \mathcal{L}, J. Appl. Math. \& Informatics 32 (2014), 441 - 446.
7. E.C. Lance, Some properties of nest algebras, Proc. London Math. Soc. 19(III) (1969), 45-68.

Sang Ki Lee received his Ph.D at Keimyung University under direction of Chul Soon Han. He has been a professor of Daegu University since 1982. His research interest is topology and mathematics education.
Department of Mathematics Education, Daegu University, Daegu, Korea.
e-mail: sangklee@daegu.ac.kr
Joo Ho Kang received her Ph.D at the University of Alabama under direction of Tavan T. Trent. She has been a professor of Daegu University since 1977. Her research interest is an operator theory.

Department of Mathematics, Daegu University, Daegu, Korea.
e-mail: jhkang@daegu.ac.kr

[^0]: Received December 20, 2014. Revised March 6, 2015. Accepted March 9, 2015. * Corresponding author. ${ }^{\dagger}$ This work was supported by the Daegu University Research Grants(2014).
 (c) 2015 Korean SIGCAM and KSCAM.

