The key aim of this research is to address the relationship between adoption level of e-commerce usage and performance based on Balanced scorecard perspectives. In order to identify the e-commerce adoption characteristics of small businesses, we carried out principal component analysis and cluster analysis by means of a survey with interview. The association of the e-commerce adoption level currently reached by a small businesses with internal process, learning/growth, customer perspectives performance is investigated and discussed.
기계학습(machine learning)이란 주어진 데이터에 대한 일반화 과정으로부터 특정 문제를 해결할 수 있는 모델(model) 생성 기술을 의미한다. 우수한 성능의 모델을 생성하기 위해서는 양질의 학습데이터와 일반화 과정을 위한 학습 알고리즘이 준비되어야 한다. 성능 개선을 위한 한 가지 방법으로서 앙상블(Ensemble) 기법은 단일 모델(single model)을 생성하기보다 다중 모델을 생성하며, 이는 배깅(Bagging), 부스팅(Boosting), 스태킹(Stacking) 학습 기법을 포함한다. 본 논문은 기존 스태킹 기법을 개선한 다중 스태킹 앙상블(Multiple Stacking Ensemble) 학습 기법을 제안한다. 다중 스태킹 앙상블 기법의 학습 구조는 딥러닝 구조와 유사하고 각 레이어가 스태킹 모델의 조합으로 구성되며 계층의 수를 증가시켜 각 계층의 오분류율을 최소화하여 성능을 개선한다. 4가지 유형의 데이터셋을 이용한 실험을 통해 제안 기법이 기존 기법에 비해 분류 성능이 우수함을 보인다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제6권1호
/
pp.6-9
/
2006
A generalized net is used to construct a model which describes the process of evaluation of the problems solved by students. The model utilizes the theory of intuitionistic fuzzy sets. The model can be used to simulate some processes, related to estimation of students' background.
본 논문의 목적은 학습자가 학습하는 과정에서 마주치게 되는 질의와 문제들의 해결책을 찾도록 도와서 시간과 장소에 구애받지 않고 언제, 어디서, 누구나, 적시적, 적응적으로 학습할 수 있는 환경을 제공하는데 있다. 본 논문은 기존의 참고문헌들의 연구를 통해 시멘틱 웹과 온톨로지 이론를 고찰한 후 문제를 풀 수 있는 온톨로지화의 가능성을 찾고자 하였다. 온톨로지는 특정하게 명시되지 않은 데이터를 유추할 수 있는 구조를 가지고 있어서 검색결과의 정확성이 더욱더 높아지고, 학습자 모두가 공감하고 신뢰할 수 있는 지식이 된다. 따라서 학습자들이 언제, 어디서나 의문점을 해결하고 학습한 것을 재확인할 수 있는 전자회로 교과에 관한 온톨로지 프레임을 구축하여 온톨로지 기반 e-learning 적용에 관한 연구를 하게 되었다.
International Journal of Internet, Broadcasting and Communication
/
제16권3호
/
pp.262-273
/
2024
We provide a detailed analysis of the data processing and model training process for vulnerability classification using Transformer-based language models, especially sentence text-to-text transformers (ST5)-XXL and XLNet. The main purpose of this study is to compare the performance of the two models, identify the strengths and weaknesses of each, and determine the optimal learning rate to increase the efficiency and stability of model training. We performed data preprocessing, constructed and trained models, and evaluated performance based on data sets with various characteristics. We confirmed that the XLNet model showed excellent performance at learning rates of 1e-05 and 1e-04 and had a significantly lower loss value than the ST5-XXL model. This indicates that XLNet is more efficient for learning. Additionally, we confirmed in our study that learning rate has a significant impact on model performance. The results of the study highlight the usefulness of ST5-XXL and XLNet models in the task of classifying security vulnerabilities and highlight the importance of setting an appropriate learning rate. Future research should include more comprehensive analyzes using diverse data sets and additional models.
유저의 일상 스케쥴을 제안하고 예측하는 서비스는 스마트 비서의 흥미로운 응용이다. 전통적인 방법에서는 유저의 행동을 예측하기 위하여, 유저가 직접 자신의 행동을 기록하거나, e-mail 혹은 SNS 등에서 명시적인 일정 정보를 추출하여 사용해왔다. 하지만, 유저가 모든 정보를 기록할 수 없기에, 스마트 비서가 얻을 수 있는 정보는 제한적이며, 유저는 유저의 일상의 routine한 정보를 기록하지 않는 경향이 있다. 본 논문에서는 스케줄러에 적히는 정형화된 일정인 스케줄과 비정형화된 일정을 만드는 일상 행동 패턴들을 동시에 고려하는 접근 방법을 제안한다. 이를 위하여 마코프 의사 결정 프로세스 (MDP)를 기반으로 하는 추론 방법과 역강화 학습 (IRL)을 통한 보상 함수 학습 방법을 제안한다. 실험 결과는 우리가 6주간 모은 실제 생활을 기록한 데이터 셋에서 우리의 방법이 기존 방법들보다 우수한 성능을 보임을 논증한다.
본 논문에서는 스마트폰 기반의 산업현장 공정관리에 대한 학습 App을 연구한 논문으로 공정의 측정치 데이터를 입력하여 관리한계선을 구하고 해당 범위를 벗어나는 이상 원인을 관리하였다. 본 공정관리를 위한 데이터입력 메뉴를 통해 이상 원인의 측정치를 검출하고 지난기록을 조회하도록 하였으며, 학습도구로 사용하기 위해 교육기관의 공지사항을 게시판 형태로 제공하여 정보교류에 도움을 주었다. 또한 본 이론과 사용방법에 대한 메뉴를 추가하였다. 본 공정관리의 결과는 차트로 제공되며, 알람메시지는 색상 심볼로 경고의 레벨에 따라 명확하게 결과를 표시해 주는 UI로 설계하였다. 본 App에 대해 관련학과와 App개발학과에 설문조사를 한 결과 사용의 편의성에 활용도가 있다는 응답이 약 82%, 학습효과 대해 약 90%가 만족한다는 결과를 보였다.
학습과정이나 맞춤형 학습과 같은 애플리케이션에서는 학습자에 맞는 상호작용에 의한 학습자 모델 결과를 신뢰할 수 있어야 한다. 이에 CAT(Computer Adaptive Testing)는 학습정보를 최대화하기 위해 학습항목을 관리할 수 있어서 유용하게 사용된다. 본 연구는 학습자 중심의 문항추천 프로세스를 설계하였다. 이는 CAT에서 활용되어질 수 있으며, 각 프로세스의 전개방법은 정형화 언어인 CSP를 사용하였다. 또한 문항추천 방법은 문항반응이론의 문항난이도를 이용하였으며, 학습자는 다음 학습의 문제 난이도 조정을 위해 난이도 변경단계를 설정할 수 있도록 하였다. 이러한 방법을 통하여 기존의 방법과 비교함으로서 그 구조적인 차이를 제시하였다.
In this paper, the prototyping process for developing syllable-initial consonant-based game 'Korean Guards' is described. Users may effectively learn Korean words using alphabetically sequential approaches, but the easiness of access bestowed on the smart environments and game algorithms could be fully utilized for the functional advantages for educational purposes. This functional game is developed on Android OS and the prototypical outcome is shown.
Reinforcement Learning (RL) is one of machine learning methods and an RL agent autonomously learns the action selection policy by interactions with its environment. At the beginning of RL research, it was limited to problems in environments assumed to be Markovian Decision Process (MDP). However in practical problems, the agent suffers from the incomplete perception, i.e., the agent observes the state of the environments, but these observations include incomplete information of the state. This problem is formally modeled by Partially Observable MDP (POMDP). One of the possible approaches to POMDPS is to use historical nformation to estimate states. The problem of these approaches is how t..
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.