Abstract
Applications such as study guides and adaptive tutoring must rely on a fine grained student model to tailor their interaction with the user. They are useful for Computer Adaptive Testing (CAT), for example, where the test items can be administered in order to maximize the information. I study how to design learner tailoring question process for recommendation. And this process can be applied the CAT and I use the formal language such as CSP in each process development for efficient process design. I use the item difficulty of item response theory for question recommendation process and learner can choice the difficulty step for learning change to control the difficulty of question in next learning. Finally, this method displayed the structural difference to compare between existent and this process.
학습과정이나 맞춤형 학습과 같은 애플리케이션에서는 학습자에 맞는 상호작용에 의한 학습자 모델 결과를 신뢰할 수 있어야 한다. 이에 CAT(Computer Adaptive Testing)는 학습정보를 최대화하기 위해 학습항목을 관리할 수 있어서 유용하게 사용된다. 본 연구는 학습자 중심의 문항추천 프로세스를 설계하였다. 이는 CAT에서 활용되어질 수 있으며, 각 프로세스의 전개방법은 정형화 언어인 CSP를 사용하였다. 또한 문항추천 방법은 문항반응이론의 문항난이도를 이용하였으며, 학습자는 다음 학습의 문제 난이도 조정을 위해 난이도 변경단계를 설정할 수 있도록 하였다. 이러한 방법을 통하여 기존의 방법과 비교함으로서 그 구조적인 차이를 제시하였다.