• 제목/요약/키워드: dynamical behavior

검색결과 131건 처리시간 0.038초

Modeling The Dynamics of Grit; Goal, Status, Effort & Stress (GSES)

  • Sangdon Lee;Jungho Park
    • International Journal of Advanced Culture Technology
    • /
    • 제11권2호
    • /
    • pp.10-29
    • /
    • 2023
  • Grit or perseverance as a factor for student success and life has gained increasing attention. Statistical methods have been the norm in analyzing various aspects of grit, but they do not address the transient and dynamic behavior well. We, for the first time, developed two linear dynamical models that specifically address the feedback structure of a child's desire to achieve a high grade point average (GPA) and the necessary effort that will increase stress between parents and a child. We call the dynamical model as GSES (Goal, Status, Effort & Stress). The two dynamical models incorporate the positive (i.e., achieving a high GPA) and the negative sides (i.e., effort and elevated stress and thus unhappiness) for being gritty or perseverant. Different types of parenting style and a child's characteristics were simulated whether parents and a child are empathetic or stubborn to their expectations and stress (i.e., willing or unwilling to change). Simulations show that when both parents and a child are empathetic to each other's expectation and stress, the most stable situations with minimal stress and effort occur. When a stubborn parent's and a stubborn child were studied together, this resulted in the highest elevation of stress and effort. Stubborn parents and a complying or empathetic child resulted in considerably high stress to a child. Interference from parents may unexpectedly result in a situation in which a child's stress is seriously elevated. The GSES model shows the U-shaped happiness curve (i.e., reciprocal of stress) caused by the increasing and then decreasing goal

Pierce 다이오드에서 플라즈마의 비선형 동력학적 거동 (Nonlinear Dynamical Behavior of Beam-Plasma in the Pierce Diode)

  • 고욱희;박인호
    • 한국진공학회지
    • /
    • 제21권5호
    • /
    • pp.249-257
    • /
    • 2012
  • 1차원 유체 모델을 사용하는 수치 코드를 개발하여 Pierce 다이오드에서 플라즈마에 대한 비선형 동력학적 거동을 연구하였다. Pierce 다이오드에서 플라즈마는 전극에서 방출되는 전자 전류와 전극 사이의 거리로 결정되는 Pierce 매개 변수가 변화함에 따라 안정하기도 하고 불안정해지기도 한다. 중성 및 비중성 Pierce 시스템의 동력학적 특성에 대해 해석적 및 수치적으로 연구하였다. Pierce 매개 변수의 값에 따라 플라즈마는 증폭 모드 또는 진동 모드를 가질 수 있으며, 진동 모드에서는 매개 변수가 감소함에 따라 계속적인 주기 배가 쌍갈림(period doubling bifurcation)을 일으키며 카오스 상태에 도달하게 된다. 이러한 거동에 대한 분석은 보다 복잡한 구조에서의 빔-플라즈마 상호작용에 대한 기본적인 이해를 위한 모델 및 카오스 제어를 위한 자료로서 사용될 수 있다.

Chaotic Behavior in Model with a Gaussian Function as External Force

  • Huang, Linyun;Hwang, Suk-Seung;Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권4호
    • /
    • pp.262-269
    • /
    • 2016
  • In this paper, we propose a novel dynamical love model of Romeo and Juliet, which has an external force with a fuzzy membership function. The external force used in the model has the characteristics of a Gaussian function. The chaotic behavior in the model is demonstrated using time series and phase portraits.

Chaos in nonlinear control systems

  • Lee, Joon-Suh;Chang, Kun-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.758-762
    • /
    • 1994
  • Complicated dynamical behavior can occur in model reference adaptive control systems when two external sinusoidal signals are introduced although the plant and reference model are stable linear first older systems. The phase portrait plot and the power spectral analysis indicate chaotic behavior. In the system treated, a positive Lyapuniov exponent and non-integer dimension clearly manifest chaotic nature of the system.

  • PDF

Quantum Mechanical Effects on Dynamical Behavior of Simple Liquids

  • Kim, Tae-Jun;Kim, Hyo-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권7호
    • /
    • pp.2233-2236
    • /
    • 2011
  • We evaluate quantum-mechanical velocity autocorrelation functions from classical molecular dynamics simulations using quantum correction approaches. We apply recently developed approaches to supercritical argon and liquid neon. The results show that the methods provide a solution more efficient than previous methods to investigate quantum-mechanical dynamic behavior in condensed phases. Our numerical results are found to be in excellent agreement with the previous quantum-mechanical results.

Free and forced analysis of perforated beams

  • Abdelrahman, Alaa A.;Eltaher, Mohamed A.;Kabeel, Abdallah M.;Abdraboh, Azza M.;Hendi, Asmaa A.
    • Steel and Composite Structures
    • /
    • 제31권5호
    • /
    • pp.489-502
    • /
    • 2019
  • This article presents a unified mathematical model to investigate free and forced vibration responses of perforated thin and thick beams. Analytical models of the equivalent geometrical and material characteristics for regularly squared perforated beam are developed. Because of the shear deformation regime increasing in perforated structures, the investigation of dynamical behaviors of these structures becomes more complicated and effects of rotary inertia and shear deformation should be considered. So, both Euler-Bernoulli and Timoshenko beam theories are proposed for thin and short (thick) beams, respectively. Mathematical closed forms for the eigenvalues and the corresponding eigenvectors as well as the forced vibration time response are derived. The validity of the developed analytical procedure is verified by comparing the obtained results with both analytical and numerical analyses and good agreement is detected. Numerical studies are presented to illustrate effects of beam slenderness ratio, filling ratio, as well as the number of holes on the dynamic behavior of perforated beams. The obtained results and concluding remarks are helpful in mechanical design and industrial applications of large devices and small systems (MEMS) based on perforated structure.

Cooperative Path Planning of Dynamical Multi-Agent Systems Using Differential Flatness Approach

  • Lian, Feng-Li
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권3호
    • /
    • pp.401-412
    • /
    • 2008
  • This paper discusses a design methodology of cooperative path planning for dynamical multi-agent systems with spatial and temporal constraints. The cooperative behavior of the multi-agent systems is specified in terms of the objective function in an optimization formulation. The path of achieving cooperative tasks is then generated by the optimization formulation constructed based on a differential flatness approach. Three scenarios of multi-agent tasking are proposed at the cooperative task planning framework. Given agent dynamics, both spatial and temporal constraints are considered in the path planning. The path planning algorithm first finds trajectory curves in a lower-dimensional space and then parameterizes the curves by a set of B-spline representations. The coefficients of the B-spline curves are further solved by a sequential quadratic programming solver to achieve the optimization objective and satisfy these constraints. Finally, several illustrative examples of cooperative path/task planning are presented.

On forced and free vibrations of cutout squared beams

  • Almitani, Khalid H.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.643-655
    • /
    • 2019
  • Perforation and cutouts of structures are compulsory in some modern applications such as in heat exchangers, nuclear power plants, filtration and microeletromicanical system (MEMS). This perforation complicates dynamic analyses of these structures. Thus, this work tends to introduce semi-analytical model capable of investigating the dynamic performance of perforated beam structure under free and forced conditions, for the first time. Closed forms for the equivalent geometrical and material characteristics of the regular square perforated beam regular square, are presented. The governing dynamical equation of motion is derived based on Euler-Bernoulli kinematic displacement. Closed forms for resonant frequencies, corresponding Eigen-mode functions and forced vibration time responses are derived. The proposed analytical procedure is proved and compared with both analytical and numerical analyses and good agreement is noticed. Parametric studies are conducted to illustrate effects of filling ratio and the number of holes on the free vibration characteristic, and forced vibration response of perforated beams. The obtained results are supportive in mechanical design of large devices and small systems (MEMS) based on perforated structure.

Nonlinear dynamics of an adaptive energy harvester with magnetic interactions and magnetostrictive transduction

  • Pedro V. Savi;Marcelo A. Savi
    • Smart Structures and Systems
    • /
    • 제33권4호
    • /
    • pp.281-290
    • /
    • 2024
  • This work investigates the mechanical energy harvesting from smart and adaptive devices using magnetic interactions. The energy harvester is built from an elastic beam connected to an electric circuit by a magnetostrictive material that promotes energy transduction. Besides, magnetic interactions define the system stability characterizing multistable configurations. The adaptiveness is provided by magnets that can change their position with respect to the beam, changing the system configuration. A mathematical model is proposed considering a novel model to describe magnetic interactions based on the single-point magnet dipole method, but employing multiple points to represent the magnetic dipole, which is more effective to match experimental data. The adaptive behavior allows one to alter the system stability and therefore, its dynamical response. A nonlinear dynamics analysis is performed showing the possibilities to enhance energy harvesting capacity from the magnet position change. The strategy is to perform a system dynamical characterization and afterward, alter the energetic barrier according to the environmental energy sources. Results show interesting conditions where energy harvesting capacity is dramatically increased by changing the system characteristics.

Vector form intrinsic finite-element analysis of static and dynamic behavior of deep-sea flexible pipe

  • Wu, Han;Zeng, Xiaohui;Xiao, Jianyu;Yu, Yang;Dai, Xin;Yu, Jianxing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.376-386
    • /
    • 2020
  • The aim of this study was to develop a new efficient strategy that uses the Vector form Intrinsic Finite-element (VFIFE) method to conduct the static and dynamic analyses of marine pipes. Nonlinear problems, such as large displacement, small strain, and contact and collision, can be analyzed using a unified calculation process in the VFIFE method according to the fundamental theories of point value description, path element, and reverse motion. This method enables analysis without the need to integrate the stiffness matrix of the structure, because only motion equations of particles established according to Newton's second law are required. These characteristics of the VFIFE facilitate the modeling and computation efficiencies in analyzing the nonlinear dynamic problem of flexible pipe with large deflections. In this study, a three-dimensional (3-D) dynamical model based on 3-D beam element was established according to the VFIFE method. The deep-sea flexible pipe was described by a set of spatial mass particles linked by 3-D beam element. The motion and configuration of the pipe are determined by these spatial particles. Based on this model, a simulation procedure to predict the 3-D dynamical behavior of flexible pipe was developed and verified. It was found that the spatial configuration and static internal force of the mining pipe can be obtained by calculating the stationary state of pipe motion. Using this simulation procedure, an analysis was conducted on the static and dynamic behaviors of the flexible mining pipe based on a 1000-m sea trial system. The results of the analysis proved that the VFIFE method can be efficiently applied to the static and dynamic analyses of marine pipes.