Acknowledgement
The authors would like to acknowledge the support of the Brazilian Research Agencies CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico), CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior) and FAPERJ (Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro) and through the INCT-EIE (National Institute of Science and Technology - Smart Structures in Engineering), CNPq, CAPES and FAPEMIG (Fundacao de Amparo a Pesquisa do Estado de Minas Gerais). The support of the AFOSR (Air Force Office of Scientific Research) is also acknowledged.
References
- Aboulfotoh, N.A., Arafa, M.H. and Megahed, S.M. (2013), "A self-tuning resonator for vibration energy harvesting", Sensors Actuat. A: Phys., 201, 328-334. https://doi.org/10.1016/j.sna.2013.07.030
- Adeodato, A., Duarte, B.T., Monteiro, L.L.S., Pacheco, P.M. and Savi, M.A. (2021), "Synergistic use of piezoelectric and shape memory alloy elements for vibration-based energy harvesting", Int. J. Mech. Sci., 194, p. 106206. https://doi.org/10.1016/j.ijmecsci.2020.106206
- Ai, R., Silva Monteiro, L.L., Monteiro Jr., P.C.C., Pacheco, P.M. and Savi, M.A. (2019), "Piezoelectric vibration-based energy harvesting enhancement exploiting nonsmoothness", Actuators, 8(1), p. 25. https://doi.org/10.3390/act8010025
- Barbosa, W.O.V., De Paula, A.S., Savi, M.A. and Inman, D.J. (2015), "Chaos control applied to piezoelectric vibration-based energy harvesting systems", Eur. Phys. J. - Special Topics, 224(14-15), 2787-2801. https://doi.org/10.1140/epjst/e2015-02589-1
- Caetano, V.J. and Savi, M.A. (2021), "Multimodal pizza-shaped piezoelectric vibration-based energy harvesters", J. Intell. Mater. Syst. Struct., 32(20), 2505-2528. https://doi.org/10.1177/1045389X211006910
- Caetano, V.J. and Savi, M.A. (2022), "Star-shaped piezoelectric mechanical energy harvesters for multidirectional sources", Int. J. Mech. Sci., 215, p. 106962. https://doi.org/10.1016/j.ijmecsci.2021.106962
- Cahill, P., Pakrashi, V., Sun, P., Mathewson, A. and Nagarajaiah, S. (2018), "Energy harvesting techniques for health monitoring and indicators for control of a damaged pipe structure", Smart Struct. Syst., Int. J., 21(3), 287-303. https://doi.org/10.12989/sss.2018.21.3.287
- Cao, J., Zhou, S., Inman, D.J. and Chen, Y. (2015a), "Chaos in the fractionally damped broadband piezoelectric energy generator", Nonlinear Dyn., 80(4), 1705-1719. https://doi.org/10.1007/s11071-014-1320-6
- Cao, J., Zhou, S., Wang, W. and Lin, J. (2015b), "Influence of potential well depth on nonlinear tristable energy harvesting", Appl. Phys. Lett., 106, p. 173903. https://doi.org/10.1063/1.4919532
- Casciati, F. and Rossi, R. (2007), "A power harvester for wireless sensing applications", Struct. Control Health Monitor., 14, 649-659. https://doi.org/10.1002/stc.179
- Casciati, S., Faravelli, L. and Chen, Z. (2012), "Energy harvesting and power management of wireless sensors for structural control applications in civil structures", Smart Struct. Syst., Int. J., 10(3), 299-312. https://doi.org/10.12989/sss.2012.10.3.299
- Cellular, A.C.S., Monteiro, L.L.S. and Savi, M.A. (2018), "Numerical investigation of nonlinear mechanical and constitutive effects on piezoelectric vibration-based energy harvesting", Technisches Messen / Technical Measurements, 85(9), 565-579. https://doi.org/10.1515/teme-2017-0070
- Chen, B., Li, S., Tang, X. and Zhang, L. (2021), "A study of a new hybrid vibration energy harvester based on broadband-multimode", Smart Struct. Syst., Int. J., 28(1), 29-41. https://doi.org/10.12989/sss.2021.28.1.029
- Costa, L.G. and Savi, M.A. (2023), "Nonlinear dynamics of a compact and multistable mechanical energy harvester", Int. J. Mech. Sci., 262, p. 108731. https://doi.org/10.1016/j.ijmecsci.2023.108731
- Costa, L.G., Monteiro, L.L.S., Pacheco, P.M. and Savi, M.A. (2021), "A parametric analysis of the nonlinear dynamics of bistable vibration-based piezoelectric energy harvesters", J. Intell. Mater. Syst. Struct., 32(7), 699-723. https://doi.org/10.1177/1045389X20963188
- Costa, L.G., Monteiro, L.L.S. and Savi, M.A. (2024), "Multistability investigation for improved performance in a compact nonlinear energy harvester", J. Brazil. Soc. Mech. Sci. Eng., 46, p. 212. https://doi.org/10.1007/s40430-024-04766-5
- Cottone, F., Gammaitoni, L., Vocca, H. and Ferrari, V. (2012), "Piezoelectric buckled beams for random vibration energy harvesting", Smart Mater. Struct., 21(3), 1-11. https://doi.org/10.1088/0964-1726/21/3/035021
- Daqaq, M.F., Masana, R., Erturk, A. and Quinn, D.D. (2014), "On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion", Appl. Mech. Rev., 66, p. 040801. https://doi.org/10.1115/1.4026278
- Daqaq, M.F., Crespo, R.S. and Ha, S. (2020), "On the efficacy of charging a battery using a chaotic energy harvester", Nonlinear Dyn., 99, p. 1525. https://doi.org/10.1007/s11071-019-05372-0
- De Paula, A.S., Inman, D.J. and Savi, M.A. (2015), "Energy harvesting in a nonlinear piezomagnetoelastic beam subjected to random excitation", Mech. Syst. Signal Process., 54, 405-416. https://doi.org/10.1016/j.ymssp.2014.08.020
- Engdahl, G. and Quandt, E. (2000), "Handbook of Giant Magnetostrictive Materials", San Diego Press, Academic.
- Erturk, A. and Inman, D.J. (2009), "An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations", Smart Mater. Struct., 18, p. 025009. https://doi.org/10.1088/0964-1726/18/2/025009
- Erturk, A. and Inman, D.J. (2011a), Piezoeletric Energy Harvesting, John Wiley & Sons.
- Erturk, A. and Inman, D.J. (2011b), "Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling", J. Sound Vib., 330, 2339-2353. https://doi.org/10.1016/j.jsv.2010.11.018
- Ghodsi, M., Ziaiefar, H., Mohammadzaheri, M., Omar, F.K. and Bahadur, I. (2019), "Dynamic analysis and performance optimization of permendur cantilevered energy harvester", Smart Struct. Syst., Int. J., 23(5), 421-428. https://doi.org/10.12989/sss.2019.23.5.421
- Kim, S. and Na, U. (2013), "Energy harvesting techniques for remote corrosion monitoring systems", Smart Struct. Syst., Int. J., 11(5), 555-567. https://doi.org/10.12989/sss.2013.11.5.555
- Kita, S., Ueno, T. and Yamada, S. (2015), "Improvement of force factor of magnetostrictive vibration power generator for high efficiency", J. Appl. Phys., 117, p. 17B508. https://doi.org/10.1063/1.4907237
- Krishnasamy, M., Upadrashta, D., Yang, Y. and Lenka, T.R. (2018), "Distributed parameter modelling of cutout 2-DOF cantilevered piezo-magneto-elastic energy harvester", J. Microelectromech. Syst., 27(6), 1160-1170. https://doi.org/10.1109/JMEMS.2018.2875788
- Kymissis, J., Kendall, C., Paradiso, J. and Gershenfeld, N. (1998), "Parasitic Power Harvesting in Shoes", In: IEEE International Conference on Wearable Computing, ver. 2. https://doi.org/10.1109/ISWC.1998.729539
- Lallart, M., Zhou, S., Yan, L., Yang, Z. and Chen, Y. (2019), "Tailoring multistable vibrational energy harvesters for enhanced performance: theory and numerical investigation", Nonlinear Dyn., 96, p. 1283. https://doi.org/10.1007/s11071-019-04853-6
- Lan, C. and Qin, W. (2017), "Enhancing ability of harvesting energy from random vibration by decreasing the potential barrier of bistable harvester", Mech. Syst. Signal Process., 85, 71-81. https://doi.org/10.1016/j.ymssp.2016.07.047
- Leng, Y., Tan, D., Liu, J., Zhang, Y. and Fan, S. (2017), "Magnetic force analysis and performance of a tri-stable piezoelectric energy harvester under random excitation", J. Sound Vib., 406, 146-160. https://doi.org/10.1016/j.jsv.2017.06.020
- Liu, L., Guo, X., Liu, W. and Lee, C. (2021), "Recent progress in the energy harvesting technology-from self-powered sensors to self-sustained IoT, and new applications", Nanomaterials, 11(11), p. 2975. https://doi.org/10.3390/nano11112975
- Lopes Jr, V., Steffen Jr, V. and Savi, M.A. (2016), Dynamics of Smart Systems and Structures, Springer.
- Narita, F. and Fox, M. (2018), "A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications", Adv. Eng. Mater., 20(5), p. 1700743. https://doi.org/10.1002/adem.201700743
- Norenberg, J.P., Luo, R., Lopes, V.G., Peterson, J.V.L. and Cunha, A. (2023), "Nonlinear dynamics of asymmetric bistable energy harvesters", Int. J. Mech. Sci., 257, p. 108542. https://doi.org/10.1016/j.ijmecsci.2023.108542
- Osinaga, S., Machado, S. and Febbo, M. (2022), "An analytical model of the electromechanical coupling for a piezoelectric stepped buckled beam for energy harvesting applications", Mech. Syst. Signal Process., 179, p. 109355. https://doi.org/10.1016/j.ymssp.2022.109355
- Rashidi, S., Ehsani, M.H., Shakouri, M. and Karimi, N. (2021), "Potentials of magnetic shape memory alloys for energy harvesting", J. Magnet. Magnet. Mater., 537, p. 168112. https://doi.org/10.1016/j.jmmm.2021.168112
- Silva, L.L., Oliveira, S.A., Pacheco, P.M. and Savi, M.A. (2015), "Synergistic use of smart materials for vibration-based energy harvesting", Eur. Phys. J. - Special Topics, 224(14-15), 3005-3012. https://doi.org/10.1140/epjst/e2015-02603-8
- Stanton, S.C., Mcgehee, C.C. and Mann, B.P. (2010), "Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator", Physica D: Nonlinear Phenomena, 239, 640-653. https://doi.org/10.1016/j.physd.2010.01.019
- Tan, D., Leng, Y.G. and Gao, Y.J. (2015), "Magnetic force of piezoelectric cantilever energy harvesters with external magnetic field", Eur. Phys. J. - Special Topics, 224, 2839-2853. https://doi.org/10.1140/epjst/e2015-02592-6
- Trentadue, F., Quaranta, G., Maruccio, C. and Marano, G.C. (2019), "Energy harvesting from piezoelectric strips attached to systems under random vibrations", Smart Struct. Syst., Int. J., 24(3), 333-343. https://doi.org/10.12989/sss.2019.24.3.333
- Vallem, V., Sargolzaeiaval, Y., Ozturk, M., Lai, Y.-C. and Dickey, M.D. (2021), "Energy harvesting and storage with soft and stretchable materials", Adv. Mater., 33, p. 2004832. https://doi.org/10.1002/adma.202004832
- Wang, T. (2023), "Pendulum-based vibration energy harvesting: Mechanisms, transducer integration, and applications", Energy Convers. Manag., 276, p. 116469. https://doi.org/10.1016/j.enconman.2022.116469
- Wang, G., Liao, W-H., Zhao, Z., Tan, J., Cui, S., Wu, H. and Wang, W. (2019), "Nonlinear magnetic force and dynamic characteristics of a tri-stable piezoelectric energy harvester", Nonlinear Dyn., 97, 2371-2397. https://doi.org/10.1007/s11071-019-05133-z
- Wang, G., Wu, H., Liao, W-H., Cui, S., Zhao, Z. and Tan, J. (2020), "A modified magnetic force model and experimental validation of a tri-stable piezoelectric energy harvester", J. Intell. Mater. Syst. Struct., 31(7), 967-979. https://doi.org/10.1177/1045389X20905975
- Wu, H., Tang, L., Yang, Y. and Soh, C.K. (2014), "Development of a broadband nonlinear two-degree-of-freedom piezoelectric energy harvester", J. Intell. Mater. Syst. Struct., 25(14), 1875-1889. https://doi.org/10.1177/1045389X14541494
- Yang, W. and Towfighian, S. (2017), "A hybrid nonlinear vibration energy harvester", Mech. Syst. Signal Process., 90, 317-333. https://doi.org/10.1016/j.ymssp.2016.12.032
- Zhou, S., Cao, J., Erturk, A. and Lin, J. (2013), "Enhanced broadband piezoelectric energy harvesting using rotatable magnets", Appl. Phys. Lett., 102, Article 173901. https://doi.org/10.1063/1.4803445
- Zou, H.X., Zhao, L.C., Gao, Q.H., Zuo, L., Liu, F.R., Tan, T., Wei, K.X. and Zhang, W.M. (2019), "Mechanical modulations for enhancing energy harvesting: Principles, methods and applications", Appl. Energy, 255, p. 113871. https://doi.org/10.1016/j.apenergy.2019.113871