DOI QR코드

DOI QR Code

Nonlinear dynamics of an adaptive energy harvester with magnetic interactions and magnetostrictive transduction

  • Pedro V. Savi (Universidade Federal do Rio de Janeiro, COPPE – Mechanical Engineering, Center for Nonlinear Mechanics) ;
  • Marcelo A. Savi (Universidade Federal do Rio de Janeiro, COPPE – Mechanical Engineering, Center for Nonlinear Mechanics)
  • Received : 2023.07.21
  • Accepted : 2024.03.29
  • Published : 2024.04.25

Abstract

This work investigates the mechanical energy harvesting from smart and adaptive devices using magnetic interactions. The energy harvester is built from an elastic beam connected to an electric circuit by a magnetostrictive material that promotes energy transduction. Besides, magnetic interactions define the system stability characterizing multistable configurations. The adaptiveness is provided by magnets that can change their position with respect to the beam, changing the system configuration. A mathematical model is proposed considering a novel model to describe magnetic interactions based on the single-point magnet dipole method, but employing multiple points to represent the magnetic dipole, which is more effective to match experimental data. The adaptive behavior allows one to alter the system stability and therefore, its dynamical response. A nonlinear dynamics analysis is performed showing the possibilities to enhance energy harvesting capacity from the magnet position change. The strategy is to perform a system dynamical characterization and afterward, alter the energetic barrier according to the environmental energy sources. Results show interesting conditions where energy harvesting capacity is dramatically increased by changing the system characteristics.

Keywords

Acknowledgement

The authors would like to acknowledge the support of the Brazilian Research Agencies CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico), CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior) and FAPERJ (Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro) and through the INCT-EIE (National Institute of Science and Technology - Smart Structures in Engineering), CNPq, CAPES and FAPEMIG (Fundacao de Amparo a Pesquisa do Estado de Minas Gerais). The support of the AFOSR (Air Force Office of Scientific Research) is also acknowledged.

References

  1. Aboulfotoh, N.A., Arafa, M.H. and Megahed, S.M. (2013), "A self-tuning resonator for vibration energy harvesting", Sensors Actuat. A: Phys., 201, 328-334. https://doi.org/10.1016/j.sna.2013.07.030
  2. Adeodato, A., Duarte, B.T., Monteiro, L.L.S., Pacheco, P.M. and Savi, M.A. (2021), "Synergistic use of piezoelectric and shape memory alloy elements for vibration-based energy harvesting", Int. J. Mech. Sci., 194, p. 106206. https://doi.org/10.1016/j.ijmecsci.2020.106206
  3. Ai, R., Silva Monteiro, L.L., Monteiro Jr., P.C.C., Pacheco, P.M. and Savi, M.A. (2019), "Piezoelectric vibration-based energy harvesting enhancement exploiting nonsmoothness", Actuators, 8(1), p. 25. https://doi.org/10.3390/act8010025
  4. Barbosa, W.O.V., De Paula, A.S., Savi, M.A. and Inman, D.J. (2015), "Chaos control applied to piezoelectric vibration-based energy harvesting systems", Eur. Phys. J. - Special Topics, 224(14-15), 2787-2801. https://doi.org/10.1140/epjst/e2015-02589-1
  5. Caetano, V.J. and Savi, M.A. (2021), "Multimodal pizza-shaped piezoelectric vibration-based energy harvesters", J. Intell. Mater. Syst. Struct., 32(20), 2505-2528. https://doi.org/10.1177/1045389X211006910
  6. Caetano, V.J. and Savi, M.A. (2022), "Star-shaped piezoelectric mechanical energy harvesters for multidirectional sources", Int. J. Mech. Sci., 215, p. 106962. https://doi.org/10.1016/j.ijmecsci.2021.106962
  7. Cahill, P., Pakrashi, V., Sun, P., Mathewson, A. and Nagarajaiah, S. (2018), "Energy harvesting techniques for health monitoring and indicators for control of a damaged pipe structure", Smart Struct. Syst., Int. J., 21(3), 287-303. https://doi.org/10.12989/sss.2018.21.3.287
  8. Cao, J., Zhou, S., Inman, D.J. and Chen, Y. (2015a), "Chaos in the fractionally damped broadband piezoelectric energy generator", Nonlinear Dyn., 80(4), 1705-1719. https://doi.org/10.1007/s11071-014-1320-6
  9. Cao, J., Zhou, S., Wang, W. and Lin, J. (2015b), "Influence of potential well depth on nonlinear tristable energy harvesting", Appl. Phys. Lett., 106, p. 173903. https://doi.org/10.1063/1.4919532
  10. Casciati, F. and Rossi, R. (2007), "A power harvester for wireless sensing applications", Struct. Control Health Monitor., 14, 649-659. https://doi.org/10.1002/stc.179
  11. Casciati, S., Faravelli, L. and Chen, Z. (2012), "Energy harvesting and power management of wireless sensors for structural control applications in civil structures", Smart Struct. Syst., Int. J., 10(3), 299-312. https://doi.org/10.12989/sss.2012.10.3.299
  12. Cellular, A.C.S., Monteiro, L.L.S. and Savi, M.A. (2018), "Numerical investigation of nonlinear mechanical and constitutive effects on piezoelectric vibration-based energy harvesting", Technisches Messen / Technical Measurements, 85(9), 565-579. https://doi.org/10.1515/teme-2017-0070
  13. Chen, B., Li, S., Tang, X. and Zhang, L. (2021), "A study of a new hybrid vibration energy harvester based on broadband-multimode", Smart Struct. Syst., Int. J., 28(1), 29-41. https://doi.org/10.12989/sss.2021.28.1.029
  14. Costa, L.G. and Savi, M.A. (2023), "Nonlinear dynamics of a compact and multistable mechanical energy harvester", Int. J. Mech. Sci., 262, p. 108731. https://doi.org/10.1016/j.ijmecsci.2023.108731
  15. Costa, L.G., Monteiro, L.L.S., Pacheco, P.M. and Savi, M.A. (2021), "A parametric analysis of the nonlinear dynamics of bistable vibration-based piezoelectric energy harvesters", J. Intell. Mater. Syst. Struct., 32(7), 699-723. https://doi.org/10.1177/1045389X20963188
  16. Costa, L.G., Monteiro, L.L.S. and Savi, M.A. (2024), "Multistability investigation for improved performance in a compact nonlinear energy harvester", J. Brazil. Soc. Mech. Sci. Eng., 46, p. 212. https://doi.org/10.1007/s40430-024-04766-5
  17. Cottone, F., Gammaitoni, L., Vocca, H. and Ferrari, V. (2012), "Piezoelectric buckled beams for random vibration energy harvesting", Smart Mater. Struct., 21(3), 1-11. https://doi.org/10.1088/0964-1726/21/3/035021
  18. Daqaq, M.F., Masana, R., Erturk, A. and Quinn, D.D. (2014), "On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion", Appl. Mech. Rev., 66, p. 040801. https://doi.org/10.1115/1.4026278
  19. Daqaq, M.F., Crespo, R.S. and Ha, S. (2020), "On the efficacy of charging a battery using a chaotic energy harvester", Nonlinear Dyn., 99, p. 1525. https://doi.org/10.1007/s11071-019-05372-0
  20. De Paula, A.S., Inman, D.J. and Savi, M.A. (2015), "Energy harvesting in a nonlinear piezomagnetoelastic beam subjected to random excitation", Mech. Syst. Signal Process., 54, 405-416. https://doi.org/10.1016/j.ymssp.2014.08.020
  21. Engdahl, G. and Quandt, E. (2000), "Handbook of Giant Magnetostrictive Materials", San Diego Press, Academic.
  22. Erturk, A. and Inman, D.J. (2009), "An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations", Smart Mater. Struct., 18, p. 025009. https://doi.org/10.1088/0964-1726/18/2/025009
  23. Erturk, A. and Inman, D.J. (2011a), Piezoeletric Energy Harvesting, John Wiley & Sons.
  24. Erturk, A. and Inman, D.J. (2011b), "Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling", J. Sound Vib., 330, 2339-2353. https://doi.org/10.1016/j.jsv.2010.11.018
  25. Ghodsi, M., Ziaiefar, H., Mohammadzaheri, M., Omar, F.K. and Bahadur, I. (2019), "Dynamic analysis and performance optimization of permendur cantilevered energy harvester", Smart Struct. Syst., Int. J., 23(5), 421-428. https://doi.org/10.12989/sss.2019.23.5.421
  26. Kim, S. and Na, U. (2013), "Energy harvesting techniques for remote corrosion monitoring systems", Smart Struct. Syst., Int. J., 11(5), 555-567. https://doi.org/10.12989/sss.2013.11.5.555
  27. Kita, S., Ueno, T. and Yamada, S. (2015), "Improvement of force factor of magnetostrictive vibration power generator for high efficiency", J. Appl. Phys., 117, p. 17B508. https://doi.org/10.1063/1.4907237
  28. Krishnasamy, M., Upadrashta, D., Yang, Y. and Lenka, T.R. (2018), "Distributed parameter modelling of cutout 2-DOF cantilevered piezo-magneto-elastic energy harvester", J. Microelectromech. Syst., 27(6), 1160-1170. https://doi.org/10.1109/JMEMS.2018.2875788
  29. Kymissis, J., Kendall, C., Paradiso, J. and Gershenfeld, N. (1998), "Parasitic Power Harvesting in Shoes", In: IEEE International Conference on Wearable Computing, ver. 2. https://doi.org/10.1109/ISWC.1998.729539
  30. Lallart, M., Zhou, S., Yan, L., Yang, Z. and Chen, Y. (2019), "Tailoring multistable vibrational energy harvesters for enhanced performance: theory and numerical investigation", Nonlinear Dyn., 96, p. 1283. https://doi.org/10.1007/s11071-019-04853-6
  31. Lan, C. and Qin, W. (2017), "Enhancing ability of harvesting energy from random vibration by decreasing the potential barrier of bistable harvester", Mech. Syst. Signal Process., 85, 71-81. https://doi.org/10.1016/j.ymssp.2016.07.047
  32. Leng, Y., Tan, D., Liu, J., Zhang, Y. and Fan, S. (2017), "Magnetic force analysis and performance of a tri-stable piezoelectric energy harvester under random excitation", J. Sound Vib., 406, 146-160. https://doi.org/10.1016/j.jsv.2017.06.020
  33. Liu, L., Guo, X., Liu, W. and Lee, C. (2021), "Recent progress in the energy harvesting technology-from self-powered sensors to self-sustained IoT, and new applications", Nanomaterials, 11(11), p. 2975. https://doi.org/10.3390/nano11112975
  34. Lopes Jr, V., Steffen Jr, V. and Savi, M.A. (2016), Dynamics of Smart Systems and Structures, Springer.
  35. Narita, F. and Fox, M. (2018), "A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications", Adv. Eng. Mater., 20(5), p. 1700743. https://doi.org/10.1002/adem.201700743
  36. Norenberg, J.P., Luo, R., Lopes, V.G., Peterson, J.V.L. and Cunha, A. (2023), "Nonlinear dynamics of asymmetric bistable energy harvesters", Int. J. Mech. Sci., 257, p. 108542. https://doi.org/10.1016/j.ijmecsci.2023.108542
  37. Osinaga, S., Machado, S. and Febbo, M. (2022), "An analytical model of the electromechanical coupling for a piezoelectric stepped buckled beam for energy harvesting applications", Mech. Syst. Signal Process., 179, p. 109355. https://doi.org/10.1016/j.ymssp.2022.109355
  38. Rashidi, S., Ehsani, M.H., Shakouri, M. and Karimi, N. (2021), "Potentials of magnetic shape memory alloys for energy harvesting", J. Magnet. Magnet. Mater., 537, p. 168112. https://doi.org/10.1016/j.jmmm.2021.168112
  39. Silva, L.L., Oliveira, S.A., Pacheco, P.M. and Savi, M.A. (2015), "Synergistic use of smart materials for vibration-based energy harvesting", Eur. Phys. J. - Special Topics, 224(14-15), 3005-3012. https://doi.org/10.1140/epjst/e2015-02603-8
  40. Stanton, S.C., Mcgehee, C.C. and Mann, B.P. (2010), "Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator", Physica D: Nonlinear Phenomena, 239, 640-653. https://doi.org/10.1016/j.physd.2010.01.019
  41. Tan, D., Leng, Y.G. and Gao, Y.J. (2015), "Magnetic force of piezoelectric cantilever energy harvesters with external magnetic field", Eur. Phys. J. - Special Topics, 224, 2839-2853. https://doi.org/10.1140/epjst/e2015-02592-6
  42. Trentadue, F., Quaranta, G., Maruccio, C. and Marano, G.C. (2019), "Energy harvesting from piezoelectric strips attached to systems under random vibrations", Smart Struct. Syst., Int. J., 24(3), 333-343. https://doi.org/10.12989/sss.2019.24.3.333
  43. Vallem, V., Sargolzaeiaval, Y., Ozturk, M., Lai, Y.-C. and Dickey, M.D. (2021), "Energy harvesting and storage with soft and stretchable materials", Adv. Mater., 33, p. 2004832. https://doi.org/10.1002/adma.202004832
  44. Wang, T. (2023), "Pendulum-based vibration energy harvesting: Mechanisms, transducer integration, and applications", Energy Convers. Manag., 276, p. 116469. https://doi.org/10.1016/j.enconman.2022.116469
  45. Wang, G., Liao, W-H., Zhao, Z., Tan, J., Cui, S., Wu, H. and Wang, W. (2019), "Nonlinear magnetic force and dynamic characteristics of a tri-stable piezoelectric energy harvester", Nonlinear Dyn., 97, 2371-2397. https://doi.org/10.1007/s11071-019-05133-z
  46. Wang, G., Wu, H., Liao, W-H., Cui, S., Zhao, Z. and Tan, J. (2020), "A modified magnetic force model and experimental validation of a tri-stable piezoelectric energy harvester", J. Intell. Mater. Syst. Struct., 31(7), 967-979. https://doi.org/10.1177/1045389X20905975
  47. Wu, H., Tang, L., Yang, Y. and Soh, C.K. (2014), "Development of a broadband nonlinear two-degree-of-freedom piezoelectric energy harvester", J. Intell. Mater. Syst. Struct., 25(14), 1875-1889. https://doi.org/10.1177/1045389X14541494
  48. Yang, W. and Towfighian, S. (2017), "A hybrid nonlinear vibration energy harvester", Mech. Syst. Signal Process., 90, 317-333. https://doi.org/10.1016/j.ymssp.2016.12.032
  49. Zhou, S., Cao, J., Erturk, A. and Lin, J. (2013), "Enhanced broadband piezoelectric energy harvesting using rotatable magnets", Appl. Phys. Lett., 102, Article 173901. https://doi.org/10.1063/1.4803445
  50. Zou, H.X., Zhao, L.C., Gao, Q.H., Zuo, L., Liu, F.R., Tan, T., Wei, K.X. and Zhang, W.M. (2019), "Mechanical modulations for enhancing energy harvesting: Principles, methods and applications", Appl. Energy, 255, p. 113871. https://doi.org/10.1016/j.apenergy.2019.113871