International Journal of Control, Automation, and Systems, vol. 8, na. 3, pp. 401-412, June 2008

Cooperative Path Planning of Dynamical Multi-Agent Systems
Using Differential Flatness Approach

Feng-Li Lian

Abstract: This paper discusses a design methodology of cooperative path planning for
dynamical multi-agent systems with spatial and temporal constraints. The cooperative behavior
of the multi-agent systems is specified in terms of the objective function in an optimization
formulation. The path of achieving cooperative tasks is then generated by the optimization
formulation constructed based on a differential flatness approach. Three scenarios of multi-agent
tasking are proposed at the cooperative task planning framework. Given agent dynamics, both
spatial and temporal constraints are considered in the path planning. The path planning algorithm
first finds trajectory curves in a lower-dimensional space and then parameterizes the curves by a
set of B-spline representations. The coefficients of the B-spline curves are further solved by a
sequential quadratic programming solver to achieve the optimization objective and satisfy these
constraints. Finally, several illustrative examples of cooperative path/task planning are presented.

Keywords: Cooperative path planning, differential flatness, multi-agent system, optimal

401

trajectory generation.

1. INTRODUCTION

In recent years, dynamical multi-agent systems
have been an active research area with advanced
enabling technology for applications including tasks
such as exploration in unknown area [1,2], military
surveillance and reconnaissance [3], search and rescue
[4,5], automated highway systems [6], formation
control [7,8]. For this type of large-scale autonomous
multi-agent systems, several distributed, hierarchical
decompositions of controller algorithms have been
proposed to overcome the problems in design
complexity and computational limitation. The key
feature of decomposing large-scale dynamical systems
into a hierarchical architecture is that it translates a
complicated controller design problem into several
computationally tangible control sub-problems.

Research on Advanced Highway Systems (AHS),
for example, proposes a hierarchical control
architecture of five layers which decomposes a
complex problem into several manageable units [6].

Manuscript received January 15, 2007; revised May 22,
2007 and December 7, 2007; accepted February 14, 2008.
Recommended by Editorial Board member Jang Myung Lee
under the direction of Editor Jae-Bok Song. This work was
supported in part by the Mixed Initiative Control of Automa-
teams program of DARPA, and the National Science Council,
Taiwan, ROC, under the grants: NSC 95-2221-E-002-303-
MY3, NSC 96-2218-E-002-030, and DOIT/TDPA: 95-EC-17-
A-04-S1 -054,

Feng-Li Lian is with the Department of Electrical
Engineering, National Taiwan University, Taipei 10617,
Taiwan (e-mail: fengli@ntu.edu.tw).

The five layers and their key functionalities are: (1)
the network layer for deciding routes, (2) the link
layer for assigning paths and target speeds, (3) the
planning layer for managing maneuvers, (4) the
regulation layer for completing tasks, and (5) the
physical layer for controlling a vehicle itself. Vehicle
control engineers can easily and systematically
specify design requirements and goals, and design
different controller algorithms for each individual
layer. Similarly, a multi-layer planning, assessment,
and control architecture of distributed semi-
autonomous forces with collective objectives has been
studied in the Mixed Initiative Control of Automa-
teams (MICA) program of DARPA [9]. Conceptually,
the MICA hierarchy includes operations and resources
supervisory (ORS) for resource planning and human
interaction, team composition and tasking (TCT) for
specifying group-level tasks, team dynamics and
tactics (TDT) for tasking team activities, cooperative
path planning (CPP) for generating feasible vehicle
missions, and vehicle dynamics and control (VDC).
Planning and control algorithms are accordingly
designed to achieve functional goals specified at each
layer. The layer decomposition of both AHS and
MICA is briefly summarized in Fig. 1.

Based on the above-mentioned hierarchies, a
complex, difficult control problem can be properly
decomposed into several sub-problems. Individual
control algorithms can then be systematically
designed to fulfill the sub-problem goals of one
specified hierarchy, and the overall goal can be
achieved by proper decomposition and construction
techniques. For example, in a agent-routing case, one

402 Feng-Li Lian

key element
key function o rome ‘/ \ resource key function
decide route, resource planning,
admission control N etwo rk 0 RS human interface
¢ path team ¢
assign path, ' . allocate
target speed Link Tc T team
cmaneuver activity ¢
manage . i task team
naneuver P I annin 9 ll T DT activity
_— t sk path ¢
complete . i generate
task ‘ Regulatloni CPP trajectory
t vehicle "~ vehicle f
control . I i control
vehicle Phys ical | VDC vehicle

Fig. 1. The AHS and MICA hierarchies and their key
elements and functions.

upper-layer controller might plan a grouping sequence
of available agents and an assignment of feasible
routes, and then generate an optimal activity for
individual agent. Based on the planned activity
received from the upper layer, the controller at lower
layer 1s responsible for generating feasible trajectories
in real time for each agent to follow. Therefore,
multiple agents can utilize available resources and
individually follow their own trajectories to achieve
the overall system goal.

At the path planning layer, i.e., the regulation layer
of AHS and the CPP layer of MICA, one of the
challenging problems is to plan an optimal path for
each agent within a team of dynamical multiagents.
The path planning algorithms should deal with the
dynamics of each agent as well as the motion
interaction within the team of agents. To effectively
control such systems, a two-degree-of-freedom design
technique with a feedforward compensator and a
feedback controller, as shown in Fig. 2, may be
adopted. Based on the pre-defined goal, the
feedforward compensator generates a set of nominal
trajectories for the feedback controller of each agent
to follow. Furthermore, the path should be generated
in real time and customized for the changes in mission,
condition, and environment. The class of problems
can be viewed as a formation control problem, that is,
the problem of controlling the relative pose of each
agent in the team, while allowing the team to move as
a whole [10].

Various approaches have been proposed for the
formation control of a multi-agent system that can be
classified into three categories: behavior-based,
leader-following, and structured formations [11].
Behavior-based approaches first specify some simple
motion primitives for each individual agent. Then, by
implementing these motion primitives in terms of a
reaction sequence, more complicated motions are
produced through the dynamical interaction of
multiple agents [12-14]. In leader-following
approaches, one single agent or several multiple

R wou :
1 Feedforward Vehicle >
| Compensator | ; El Dynamics
i et L.
I
I
|
reference :
trajectory ‘ X
: \ Feedback
I ' Controller
! L. Xr
[
|
\
L U — -

Fig. 2. Two degrees of freedom design.

agents play the role as the leader(s) and the other
agents act as the followers of the designated leader(s).
The key issues of the approach are the overall
formation pattern generated by this set of local
controllers and the robustness of control algorithm for
maintaining the inter-agent position and velocity
[10,15,16]. In a structured formation, the entire team
of agents is treated as a single structure, e.g., virtual
structure [17], and formation queue [18]. Desired
formation is related to the designated structure which
induces every individual path for these agents within
the team to follow.

In the leader-following and structured formation
approaches, planning an optimal path for each agent
requires solving the dynamics of the whole set of
agents under the formation constrains. On the other
hand, the behavior-based approaches are difficultly
analyzed mathematically. Therefore, the convergence
of team formation cannot be guaranteed in advance
[14]. Hence, in this paper, we introduce an optimal
cooperative path planning algorithm based on
differential flatness approach. Differential flatness is
an intrinsic property of nonlinear control systems that
can be used to transform the original complex
dynamical equations into a set of algebraic equations.
Moreover, the formation specification for achieving
cooperative tasks is coded within the objective
function. Therefore, standard optimization
methodologies such as sequential quadratic
programming can be used to solve the path planning
problem. The advantages of the planning algorithm
are two-fold. First, the computational complexity 1s
reduced from solving numerical differential equations
to dealing with a set of algebraic equations. Second,
the cooperation, e.g., the designed formation pattern
among dynamical multi-agents, is specified in terms
of the objective function. That is, without modifying
the dynamics of each individual agent, different
cooperative paths can be easily generated.

In this paper, we focus on the discussion of the
design architecture and plan planning for cooperative
agents. The proposed design architecture considers
three scenarios of grouping and cooperation of
multiple agents. Based on desired missions and
available information, the real-time path is generated
by the planning algorithm. Given system dynamics

Cooperative Path Planning of Dynamical Multi-Agent Systems Using Differential Flatness Approach 403

and state and input constraints, the algorithm first
finds trajectory curves in a lower-dimensional space
and, then, parameterizes the curves by the B-spline
representation. The coefficients of the B-spline curves

are further solved by a sequential quadratic
programming solver to meet the optimization
objectives and constraints. Finally, using the

representation of these B-spline curves, the state and
input trajectories are obtained to accomplish the
designated activity. In order to incorporate the timing
requirements in task planning, the actual timing
variable is then redefined to become a new state
variable and can be arbitrarily designed to fulfill any
required temporal constraint. The actual running time
will then be recovered from the solution of the
optimization approach adopted.

This paper consists of six sections, including the
Introduction section. Section 2 describes the problem
formulation at the cooperative path planning
framework. Section 3 discusses related mathematical
background and Section 4 outlines key components of
the planning algorithm. Section 5 presents the
integration of temporal constraints into the algorithm.
Section 6 provides illustrative examples of
cooperative path/task planning in a three-agent system.
Summary and future directions are provided in
Section 7.

2. PROBLEM FOMULATION AT CPP LAYER

In this section, we describe the problem formulation
of the cooperative path planning (CPP). At the upper
layer of the MICA hierarchy as shown in Fig. 1, the
TCT controller plans and teams available resources
such as vehicles and munitions to achieve specified
group-level tasks. Taking the teaming results from the
TCT controller as input, the TDT controller then
generates a timing sequence of team activities. At the
bottom, the CPP controller accepts the activity
sequence from the TDT controller and generates
feasible missions such as sets of waypoints and
actions at these waypoints for individual agents.
Operator commands and environmental uncertainty as
well as the constraints of teaming and activity
precedence, coordinated actions, and agent dynamics
could also be considered at the CPP tasking. Hence,
the controller design at CPP is to generate cooperative
path of one agent or a group of agents to support the
desired activities as determined by the TDT controller.
In the following, three scenarios of agent activities are
discussed first, and the path planning algorithm will
be described in the next section.

Fig. 3 shows three scenarios of agents tasking from
home bases (B) to targets (7). In Fig. 3(a), one single
agent 1s tasking from the home base position to the
target position. The target position and the designated
action at the position is simply instructed by an upper-

rr .
/,.; —————————— e "-._‘__1\
tJ‘ \\l\‘ \\\\
rI \l\.‘ . .--'":"-‘-’_'—"_-._T;"ﬂa‘\.‘:.‘."\
-"\)"I‘ < ",: RN
‘ ------- ®
B B
(a) (b)
B
e @
B @ T 7 Bs
(c)

Fig. 3. Three scenarios of agents tasking from home
bases (B) to targets (T). r¢: safety radius,

r; » information radius, 7y : target detection
radius.

level command unit such as a TDT controller. After
taking off from the home base, the agent needs to
compute real-time paths based on available
information such as the target position, the positions
of other adversarial entities and their threatening
factors, and its own state and input constraints. As

shown in Fig. 3(a), r¢ denotes the safety region of

the agent and 7, represents the range of available

sensing and communication information. For
simplicity, the distance measures are in the two-
dimensional space only. Having a relative distance

larger than r¢, the agent can safely move without

causing any damage. Hence, in order to succeed the
desired missions, this constraint should be strongly

imposed. On the other hand, 7, might be a

combination of sensing capability to detect its
neighboring environment, and communication
capability of obtaining information from its

neighboring agents. In general, r¢ <r;, otherwise,

the agent might collide with other agents betore it
detects them or is informed by others. Similarly, the

target unit has a working radius of 7, that denotes a

feasible detecting range if the target has a radar
system or a threatening range if the target has a
defensive capability.

The second case considers a scenario where
multiple agents are commanded to accomplish a
designated activity. For example, Fig. 3(b) shows that
three agents are tasking from one home base to one

404 Feng-Li Lian

target location. In this case, three agents might be
instructed by the same activity command, and need to
move together in a designated formation. Hence, the
CPP controller at each individual agent should
generate a set of feasible, real-time paths which
guarantee the group of agents to move in the
designated formation. A designated formation should
keep the relative distance of any two agents be larger
than r¢ for collision avoidance and smaller than r; for
information sharing. Similar to the first case, »7 should
be further considered when the group of agents are
moving within the adversarial area.

The third case considers a more general scenario
where multiple agents from different home bases are
commanded to either one common target or multiple
targets. At some location, these agents are
commanded to move together and have a certain level
of formation interaction. Conceptually, this scenario
can be viewed as a combination of the first two cases.
That is, when one agent just leaves its home base, its
CPP controller works like that in the first case, and,
when these agents are formed together, their CPP
controllers work like those in the second case.
However, more methodologies should be further
developed in, for example, the merging and splitting
of multiple agents.

In the next section, we first discuss related
mathematical background of differential flatness for
transforming the system model from differential
equations into algebraic equations. The setup of the
CPP algorithm, the integration of the CPP algorithm
and the CPP tasking with temporal constraints will be
presented in Sections 4 and 5.

3. MATHEMATICAL BACKGROUND

In this section, related mathematical background of
the cooperative path planning algorithm is discussed.
The key property and formulation of differentially flat
systems are first outlined. A new set of functions,
called flat outputs, can then be defined and used to
describe the dynamical behavior of the system. Hence,
a set of differential equations can be transformed into
a set of algebraic equations. Similarly, the set of
constraint equations for the dynamical system can also
be represented by the same set of flat outputs. The set
of algebraic equations along with the constraint
equations can be easily solved by any standard
nonlinear optimization solver.

Via a special feedback, a differentially flat system
can be said to be equivalent to a linear system. Many
realistic examples such as the crane, and the car with
n trailers, are flat by properly choosing the state
variables. Based on the discussion in [22], the
mathematical properties of a differentially flat system
are summarized as follows.

Assume that the dynamical model of one agent can

be described by the following nonlinear control
system:

x = f(x,u), (D)

where xeR” are the states, ucR"” are the inputs,

and all vector fields and functions are assumed to be
real-analytic, and £ (0,0) = 0 and

rank g(o, 0)=m. (2)
ou
The states and inputs in system (1) are also assumed

be to constrained within some state and input
subspaces, U and X , that is, © €U, x< X. Hence, if

the system is dynamically feedback linearizable, then
the following regular dynamic compensator (a) and
the diffeomorphism (b) can be found.

(a) 77 =a(x,n,v)

m ©
u=>b(x,n,v), neR?veR”,
where (0,0,0), 5(0,0,0); and
(b) £=E(x,77), £eR™1. (4)

Hence, the closed-loop system can be transformed
into a linear controllable system, represented by the

new state variables &, thatis, &=F¢&+ Gy, where

F, G are constant matrices of compatible dimension.
Moreover, the linear system can be further
transformed into the Brunovsky canonical form

(1)
Zlnl

:V19
(m) _
222 ._VZ, (5)
zf;m) =V

where ny,n,,...,n, are the controllability indices

L] m

and 7 = (Zl,...,zl(”rl),... Z

V2, ,---,z,(n”m_l)) is another
set of basis vectors spanned by the new state variables

£. Hence, one invertible (ntq)x(n+q) matrix T can
be obtained, such that Z=T7T¢&, or Z=T Z(x,n).
Therefore, by the diffeomorphism property of E, x
and & can be regarded as functions of the new basis
Z. Furthermore, the input u can also be regarded as a
function of Z and v. Finally, the original state x and

the input u# can be expressed as functions of Z as
follows.

x=A(z,2,-+,z%),

(6)
U :B(z,z',n-,z’g),

where and «,f are some

Z2=(2{,29,""",Z,,)

Cooperative Path Planning of Dynamical Multi-Agent Systems Using Differential Flatness Approach 405

constants.

In summary, a dynamical system is said to be
differentially flat if it is linearizable via the special
feedback where the new set of basis z is regarded as a
fictitious output and called a flat output. By utilizing
the differentially flatness property, the state and input
variables can be directly described as functions of the
flat output and a finite number of its derivatives.
Hence, the problem of generating proper trajectory for
the state and input can be transformed into the
problem of the trajectory generation of the flat output
z. Mathematically speaking, by assigning the new
output variables, the problem of solving a set of
differential equations can be transformed into that of
solving a set of algebraic equations.

For the path planning of cooperative multi-agents,
the dynamics of the agent along with the constraints
on the state and input variables, and their cooperation
can be formulated as an optimization problem. The
cooperative functionality is mathematically
formulated as an integrated objective function.
Assume that the dynamical model of one agent can be
described by the differential equation (1). The state

and Input are also assumed be to constrained by the
following inequalities:

LO < CO (X(l‘o),u(fo)) < Uo,
L, <c,((t)u(t) <U,, ty<1<iy,

where c¢«(-,-) is a function of x,u; ty, 1y are the

initial and final times, respectively; and L's,Us's

represent the lower and upper bounds, respectively, of
the constraints. Assume that there are N, initial
constraints, Ny final constraints, and N, path
constraints. The initial and final constraints might be
imposed by the home base and target locations, and
the path constraints are induced from the agent
formation and adversarial environment. The problem

is then to find a set of paths for system (1) that
minimizes the following objective function:

J = 0y (x(tg),ulty)) +0 o (x(t) ult)

+ [0, (x(0),u(t))d,)
fo

where 0y(,,-) and o,(,-) are the objective functions

associated with the initial and final locations,
respectively, and o,(,-) is the instant objective

function at time 7. Furthermore, typical components of
o,(-,-) are described as follows:

0, (x,u) = 0, (x,u) + 0 p(x,u) + 0, (x,u), 9)

where o0,(-,-) denotes the cost of tracking one

reference path, o,(,) denotes the cost of maintain-

ing one designated formation pattern, and o,(;,-)

denotes the cost associated with the agent itself such
as the fuel used [21]. Note that the cooperation of
multiple agents is enforced by including different
formation functions in o ().

By utilizing the differential flatness property, the
coupled dynamics of the multiple agents are
transformed into a set of algebraic equations in terms
of a set of new output variables in a lower-
dimensional space. Similarly, the set of constraints
can also be represented by the set of new output
variables. Finally, the set of algebraic equations along
with the constraints can be solved by any standard
nonlinear programming solver. Hence, the optimal
solution for the new output variables can be found and
the optimal curves of the original state and input
variables can then be obtained by (6).

4. THE COOPERATIVE PATH PLANNING
ALGORITHM

In this section, we first outline the CPP algorithm
and then describe its related constructing techniques
in detail. For a given system dynamics and a set of
state and input constraints, and to minimize a pre-
specified objective function, the CPP algorithm first
makes use of the differential flatness property to find
a new set of outputs in a lower-dimensional space and
then parameterizes the outputs by the set of the B-
spline basis functions. The coefficients of the B-spline
curves are further solved by a sequential quadratic
programming solver to meet the optimization
objectives and constraints. Finally, the path for the
agent controller to follow is represented by the B-
spline curves with the obtained coefficients [19,20].

The first step of the algorithm is to determine a
feasible set of outputs such that system (1) can be
mapped into a lower dimensional output space. That s,
it i1s desirable to find a set of flat outputs

zZ= {zl,---,zq},q <n, ofthe form:

7= g(x,u,u(l),---,u(r)), (10)

that 1s, z is a function of x,u,u(l),---,u(”), such that
(x,u) can be completely determined by (10), i.e.,

(eou) = h(z, 2V -, 29, (11)

where ') and 2z denote the ith time derivative
of u and z, respectively. A necessary condition for the
existence of such outputs can be found in [22] and
such systems are called differentially flat systems. If
no flat outputs exist or one cannot find them, (x,u)

can be still be completely determined by the following

406 Feng-Li Lian

reduced-order form:

(x,u) = Iy (z,z2V,---,2%") and (12)
0="hy (2,20, 252, (13)

In this case, an additional path constraint, i.e., (13),
should be included into the set of constraints (7).

Once a particular set of outputs are chosen, they are
further parameterized in terms of the B-spline curves
as follows [23]:

P
z1(t) = 2 b; 1, ()C 11 for the knotpoint sequence t,
i=1

)
Zy (1) = Z b 1, (t)Cf for the knotpoint sequence t,,
i=1

Pq
z, (1) = Zbi, X, (1)C? for the knotpoint sequence t 7’
i=1

where b; k; (t) are the i-th B-spline basis functions

for the output z; are the

J
coefficients of the B-spline. p; =/, -(k jomi)+m;

with order &, c/

I

where /; is the number of knotpoint intervals, and

m; 1s the number of smoothness condition at the

knotpoint. A B-spline representation of =z

J
additional uniformly distributed breakpoints is
pictured in Fig. 4.

After the outputs have been parameterized in terms
of the B-spline curves, the objective function (8) and
constraints (7) can also be re-formulated in terms of

the coefficients of the chosen outputs; that is,

J()C,H) - J(y) and {Co ('9 ')9Cf ('5 ')a Ct ('9)} — C(y)
—cl...ct c?..c* ..cq...C1

where y=((C, Cp s G, Cp e, O ,Cpq)e

with

RY, M =Zf:1 P, Note that E(y) might also

include the additional path constraints as a result of
not choosing a set of flat outputs. Hence, the problem
can be formulated as the following nonlinear
programming form:

breakpoints

knotpoints

my at knotpoints defines smoothness
zi(10}

v
\ AN \.\Iv
Kj - 1 degree polynomial between knotpoints

- - -

Fig. 4. A B-Spline representation of z.

System Dynamics:

X = f(x,u)
State and Input Constraints:

Ly < co(x(te), u(to))
< eplx{tr), ulty))
er{x(t). u(t))

IATACTA
™
e

Cost Function:
J = OO(X(ro)su(Io))+0f(-’f({f)?zf(.(f))+[of(x(£), u(1))dt
2 Iy

New Outputs:
z=glra V), (xou)=h(z.zD. .2

Using B-spline representation:
- £1 - 1 £y . &
zi(t) = 3 bip (0 . zg(t) = 3 big, (NC]
i=1 i=1

New Cost Function:

min J(v)
}%ERM

21 ~ 2 2
Y= ((1,(/plf_\Cg . "'-'C"Pz’ .o

subject to L <e(y) < U

] e
)

Fig. 5. Key formulation of the cooperative path
planning.

min J(y) subjectto L<c(y)<U. (14)
yef!RM

The coefficients y of the B-spline curves are further

solved by a sequential quadratic programming
package, called NPSOL [24], to satisfy the

optimization objective 7(y) and the constraints on

Z:-(v). Finally, the state and input trajectories can be

described in terms of these coefficients, and are fed
into the feedback controller.

The formulation is implemented in the formation
control of one multi-agent team where the formation
is specified within the objective function along with
other state and input constraints. That is, any spatial
constraints on the team tasking can be easily coded
into the constraint set, (7). Key formulation of the
cooperative path planning algorithm is summarized in
Fig. 5. Applications of the differential flat approach to
mechanical examples such as 2-D crane, car with n-
trailers, the Kapitsa pendulum, and the mverted
double pendulum can be found in [22]. Also, the
examples of a planar ducted fan and unicycle are
discussed in [19] and [25], respectively.

5. INTEGRATING TEMPORAL
CONSTRATIONS

In order to further include any temporal constraint
associated to agent activities, the original formulation
should be modified to augment one additional time
variable into each agent dynamics [19]. We first
define a slack state variable Tand let 7 =¢/7, where

t and ¢ are “old” and ‘“new” time variables,

Cooperative Path Planning of Dynamical Multi-Agent Systems Using Differential Flatness Approach 407

respectively. That is, 7 denotes the ratio between the
true time variable and the new pseudo time variable.
By doing so and letting the time interval of r be
[0,1], the algorithm can generate a path for the pseudo
time from 7=0 to 7=1 and numerically solve the
value of 7 simultaneously. Hence, including the slack

time variable 7, the agent dynamics is augmented as
follows:

x'= f(x,u,T), (15)
T'=0, (16)

where (-)'=d()/dr, that is, the new dynamics is
formulated in terms of the new pseudo time t and will
be numerically solved for 7 [0,1]. Furthermore, the

set of state and input constraints and additional
temporal constraints can be expressed by the
following set of inequalities:

Ly < co(x(0),u(0),T) < U,,
Lfsig(xa%uaxr)gcg,)
L <cr(xu,TY<U,,
Ly <cr(T)<Uy.

-The introduction of new time variables 7 and 7

could also change linear constraints into nonlinear
constraints. For example, consider the following the
constraints on initial velocity and acceleration:

L,<x <U,,

L,<% <U,

Using the definitions of T =¢/7 and (-)'=d()/dr,

the above two inequalities become the following

nonlinear constraints:

L,<x'/T <U,,
L, <x"IT <U,,

because both x and T are variables. Also, the objective

function of the augmented systems can be modified as
follows:

J = 00(x(0),u(0),T) + 0 s (x(1),u(1), T)

| ~ (18)
+ L or (x(7),u(r),T)dr.

Note that the initial and final times (of7) of the
integration have been changed from (#,,¢ r) to(0,1),

and the actual final time, ¢ 7> 1s equivalent to

z‘f:T since T=¢t/7t and 7=1. After this modifi-

cation, we can construct temporal constraints as well
as spatial constraints in the CPP algorithm directly.
The cooperative path can then be generated based on

System Dynamics:

X' = flxu,T)
7' = 0
where () = d()jdrand T =1/t

State, Input. Temporal Constraints:

Ly < &(0)u(0,T) < U
L < éplx(Dyhu(),T) < U
Ly < Celx.u, T) < U,
Lr = er(T) < Uy

Cost Function:

J o= 0ox(0).u(0), T) + opx(1}.u(1). T)

3!
+ / 6 (x(T) (1), T)Tdt
JO

Call CPP m Fig. 5

Fig. 6. Key formulation of the cooperative path
planning with temporal constraints.

different pre-specified planning time horizons of each
agent activity. Key formulation of the cooperative
path planning algorithm with temporal constraints is
summarized in Fig. 6.

In practical design situation of a multi-agent system,
the number of agents could be large and the total
dimension of agent dynamics could be big. Also, each
agent might have multiple tasks that need to be
coordinated with those of other agents. Hence, the
computational complexity in the agent-task space
could be in the order of n XN XL, where n is the
dimension of agent dynamics, N is the number of
agents, and L is the number of tasks of each agent
required to perform. If the total number of agents
involved in the task planning 1s too large, the
algorithm might spend longer computational time to
find an optimal solution. This drawback can be
overcome by imposing planning time window for
each agent-task, that is, adding one extra timing
constraint in the fourth inequality of (17). Therefore,
the task planning and path generation of each agent
can be done separately. However, a high-level task
planner is needed to generate the time window for
each agent-task, and the temporal constraints in this
case will be more conservative compared with the
previous case. Two illustrative examples of the
cooperative path planning of three agents are
presented in the next section.

6. ILLUSTRATIVE EXAMPLES

6.1. Agent formation with spatial constraints

In this section, we use the formation scenario of
three agents to describe the cooperative path planning
task [27]. As shown in Fig. 3, three agents are tasking
from their home base B to target 7. For the ease of
presenting the design procedure, a simplified 2-D
model of agent dynamics is described as follows:

408 Feng-Li Lian

i =u,, and ' =u,, =123 (19)

where x' and 3’ are the coordinates of the ith
agent, and ui and u;, are its corresponding inputs.

Furthermore, path and input constraints are expressed
as follows:

re SN =52 +(y -y <,

. o . (20)
u < u.u <u
lbx,y = “x>%y —=%yubx,y>

where i,j=1,2,3,i# j, and the first inequality is for

collision avoidance and the range of obtaining
information from its neighboring agents. The goal is
assumed to task these three agents to the target by
using minimal fuel and close formation. Hence, one
choice of the objective function is as follows:

0y (x,u) = Zafé [\/(xI)Yy -yl y? — r’q

i#]
3 M - - + . ; 2

+ Yo | Wt ? - | @)
i=l1

3
+ Za; (u, + u;)z,
i=]

where « ’s are weighting factors, (xﬁa, y}}) 1s the
reference path specified by the upper-layer activity

controller, and r»”,r' are desired ranges between

agents as well as each agent and the path. Note that
the first summation in (21) denotes the cost of
maintaining one designated formation pattern, the
second summation denotes the cost of tracking one
reference path, and the last summation denotes the
cost (or fuel) for controlling the agent. Also, the
cooperation of maintaining a proper formation is
enforced by the first set of cost functions. Therefore,

if ag is larger, then the objective is to maintaining a

predefined formation. On the other hand, if a;R 1S
larger, each agent has strong potential on tracking a
desired trajectory. Finally, if the control input (i.e.,
fuel consumption) is more important, then ai should

be set as a larger value compared with the other two
sets of parameters.
For this system, it is easy to find one set of flat

outputs, z;,k=1,---,6, such that x' =z, |, =
Zy and wuy =2y, 4,u, = Z,,;. For each output z,

we let ‘the number of intervals of knotpoints’, ‘the
degree of smoothness at each knotpoint’, and ‘the
polynomial degree’ be 4, 3, 6, respectively. Hence, the
number of coefficients of each output is 15

(=4(6-3)+3), that is, z (=) . b

k
106 (1)C; and

y= (Cll,---,C115,---,C165) in the nonlinear programm-
ing formulation.

One simulation study of different formations of
three agents in a two-dimensional space is shown in
Fig. 7. Their base point is at (100,100) and multiple
target points are located at (110,100), (120,100), (120,
110), (120, 120), (114,114), and (107,107). Hence,
there are seven planning horizons. This group of
agents change their formation at every target point and
the sequence of the seven formations are “C”, “|”, “C”,
“\7¢C, P, “C”. That is, three agents first fly from
(100,100) to (110,100) by using the “C” formation
and change to the “” formation at (110,100), and so
on. In each segment, the simulation time is set as 5
seconds because, during this time period, a good
dynamical behavior of the agent team can be observed.
Also, 21 breakpoints are used in each segment. In this
case, selecting the number of points should depend on
the smoothness of generated trajectory as well as

120t

115}

> 110}

105

100

100 105 110 115 120
X

Fig. 7. Formation of three agents.

t02f T T]
T U R R SR
101 :
100.5b oo
1 > 100 : : :

100 108 1‘;0 115 120 110 111X 112 113
X

(a)

120.<...,....‘g..”......ué...“....,/}é.,‘....,j.'..’.,"”......
T EEERESRR7 (O A
: : . P
: 2L : -

100 105 110 115 120 117 118 119 1
X X

(b)

Fig. 8. Snapshots of simulation result of formation
change.

120}

115

> 110

105

120

115

> 110

105

100}

Y .;._-__. =

Cooperative Path Planning of Dynamical Multi-Agent Systems Using Differential Flatness Approach 409

computational cost. If a large number of breakpoints
is selected, then the generated trajectory is smooth,
but the computational cost increases. Different
formations are coded by specifying different objective
functions, that is, different settings for the first
summation in (21), but the set of constraints remain
the same. Also, the dynamical location of the
formation is based on a pre-defined set of desired
paths and enforced by the second summation in (21).
Collision avoidance during one formation is coded
within the constraint set. In the beginning of each
segment, the algorithm solves the optimal values of
the coefficients of the flat outputs. The path of each
agent 1s then constructed by the coefficients solved
and their associated B-spline basis. Fig. 8 shows two
snapshots of the simulation result near (110,100) and
(120,120) during the formation change. The switching
of formation patterns is done by setting functions of
different related distance between any pair of agents.

6.2. Path planning based on different dynamical
models
In order to illustrate the effectiveness and convenience
of using the proposed framework for generating
cooperative paths, three different dynamical models:
namely, direct, kinematic, and dynamic, are added in
the section. For the ease of presenting the design
procedure, three agents operated in a 2-D plane are
considered. First, similar to that discussed in Section
6.1, the direct model of agent dynamics 1s described
as follows:
X =u

=U,,

o 22)

Y zuys i:152933

where x' and y' are the coordinates of the ith

agent, and and u, and u,

inputs. Second, the kinematic model of agent
dynamics is described as follows:

are its corresponding

X =V cos(8),
¥ =v'sin(@"), (23)
6 =w, i=1,2,3,

where x' and)’ are the coordinates of the ith

agent, &' is the orientation of the ith agent, and V'

and w' are the translational and rotational velocity

inputs, respectively. Third, the dynamical model of
agent dynamics is described as follows:

m'i +n'x = (F] + F))cos(8'),
m' 340’5 = (F + Fp)sin(8"), (24)

J'0 + ¢ =(F -F))r, i=1,2,3.

This example is the dynamical model of a vehicle
with two ducted fans for propulsion studied in [26].

Hence, F;,F ;;, are two inputs and should be positive,

and m',n',J',¢", and ¥’ are mass, viscous friction,
rotational inertia, rotational friction, and moment arm
of these fan inputs, respectively.

The goal is to generate paths for forming a close

right triangular formation. Hence, the objective
function is chosen as follows:

N2 N2 i7'2
ACIED)| R/ERICNMENICE IR

i#j

where 77 °s are desired relative distance between

agents. For the first direct model, it 1s easy to find one

set of flat outputs, z;,k=1,---,6, such that x'=
;

Zoxi-12Y = Z2xi and Uy _ZZXE—I’uy = 2%

A

Hence,

two flat outputs are used for each agent. For the
second model, the following nonlinear constraint can
be found based on the kinematic model.

i sin(@') =3 cos(6'), i=1,2,3. (26)

For the case, although there are three physical outputs
at each agent, i.e., X', yi,H‘f , only two flat outputs,
X' =2y, y' =z,;, are enough to represent the
system variables. The third output, &', can be

computed from (26), that s,

O =tan”'(3' /%), i=12,3. (27)

Similarly, for the third dynamic model, the following
nonlinear constraint can be found.

(m's +n'xysin(@') = (m'y" +n'y")cos(6"). (28)
Therefore, although there are three physical outputs at
each agent, 1.e., x',y',0', only two flat outputs,
x = Zoyi]s yi =z,,;. are enough to represent the

system variables. The third output, &', can be

generated based on the calculation from (28). Also, in
the case, the fan inputs for the agent should be
positive. Hence, based on the dynamical model (24),
the representation of these fan inputs is formulated as
follows:

st _ é{(mf:ff it iy eos(9)+ (m +1' 31) sin(&)+%,(J‘féf 14")} ,

r

F, = %{(mi £ 473y cos(@ (' 4y’ 5) sin0")—(S0 +4'67)},
i=1,2,3. (29)
Theretore, F; >0 and F;, >0 can be easily formu-

lated as inequality constraints in terms of flat outputs.

410 Feng-Li Lian

2D plane

115

116}

> 105

100

95

160 11IO 150 1;30 1‘:10 1é0
(a) Direct model.

2D plane

116

110

> 105

100} /

95

I 1 ! L I |
100 110 120 130 140 150
x

(b) Kinematic model.

20 plane
115

110} A///ﬂﬁ%
- 105 Aq@ﬁ?

100 - /MMA‘MV .

95

L ! ! 1 I 1
100 110 120 130 140 150
x

(¢) Dynamical model with input constraints.

Fig. 9. Formation of three agents based on different
dynamics models.

The simulation results of these three cases are
shown in Fig. 9(a)-(¢). Three segments of desired
paths are considered in all the cases. These desired
paths are started from (100,100), going through (115,
100), and (135, 110), and stopped around (150, 110).
In each segment, each path consists of 21 generated
points, and the triangular formations of these agents
shown in the figure are for every other points. As
shown in Fig. 9(a) and (b), the paths generated by the
direct and kinematic models have similar
characteristics and fit into the desired paths closely.
However, the paths generated by the dynamic model
have higher-order maneuver due to the second-order
dynamics as well as the positive input constraints.

6.3. Agent formation with temporal constraints

In this section, we use the scenario of activity
coordination of different agents with temporal
constraints, as shown in Fig. 10 [28], and detailed
description of these activities is summarized in Table
1. Simply speaking, three agents are routed in a
manner to achieve a set of coordinated activities (ay,
denoting the jth activity of ith agent). For example,
two scenarios are considered: The ‘look’ activity ap»
of Agent 1 on Object b must happen after the ‘strike’
activity a,; of Agent 2, and there is a simultaneous
‘strike’ activity by Agents 1 and 3 on Object c. The
two sets of coordinated activities can be formulated as

the following temporal constraints:

T2 > 72 (30)
2 3 o3t 732 (31)

where 7Y denotes the planning time horizon of the jth
activity of the ith agent.

For the ease of presenting the design procedure, a
simplified 2-D model of agent dynamics is described
as follows:

%/ —u and 37 = J i=1,2,3, (32)

where x and 7 are the coordinates of the jth activity

of the ith agent, and u’ and w? are its

y
corresponding inputs.

Additional state and input constraints can be further
expressed as follows:

. . —
rg S\/(xy ¥ 1 (7 -39y <y,

i g ,q i
qux,y < Uy Uy, Suubx,y’

(33)

where i, k=1,2,3, i #k, and the first inequality is
for collision avoidance and the range of obtaining
information from its neighboring agents. The goal is
assumed to task the three agents to the target by using
minimal fuel and time. Hence, one choice of the
objective function is as follows:

o, (x,u)= Y. (T +af @l +ul)?, (34)

Fig. 10. Activity coordination of three agents.

Table 1. Planned activities of these three agents at
five targets.

Target |home a b C d e
Agent| v — PSP — L —PSP
1 «— LL <«
Agent| v2 — — P,S,P — P
2 — —
vy — — L
Agent P.S,P « «—
3 — L
<« «—

P: Patrol, S: Strike in and out, L: Look

Cooperative Path Planning of Dynamical Multi-Agent Systems Using Differential Flatness Approach 411

¢(150.250}

150

diB0200) o
/." .-I
P
“ N
. R
. S
ML
LN
Y Fa
£oh
SN R
e{bHla

10M0F

sof % ¥3{100,50) k v2{150,50)) v1(200,50)

1 1 1
0 50 100 150 200 250 300

280

6[150,250)
270+

/ f\

|
:||
{ oanl i - f i
5 | N III i \
] ook : v — .
: ¥ !
! E '|l
X i SR 1
Yo 2200 S0 — " 1
" } i
. O b . s
160 170 180

120% 130 140 150

(b) (c)

Fig. 11. Activity coordination of three agents with
additional tasking around target points. (a)
the whole scenario, (b) a close look around
(150,150) when Agent 1 looks at Target b
after Agent 2 strikes it, (¢) a close look
around (150,250) when Agent 1 and Agent 3
strike Target ¢ simultaneously.

For this system, it is easy to find one set of flat
outputs, z, such that (xg’.,yfj,Tij v J) (Zk.21),

and to implement the parametrization z,(¢)=
Z_l ; 6(I)Ck and y=(Cf) in the nonlinear

programming formulation.

The simulation results of activity coordination of
three agents in a two-dimensional space are shown in
Fig. 11. The three agents are based at at (200,50),
(150,50), and (100,50), respectively, and multiple
target points are located at a(250,100), b(150,150),
c(150, 250), d(50,200), and ¢(50,100). At each target
point, three circles of different radii are depicted to
schematically indicate different activities occurring at
the target point. These three regions, started from the
target points, are denoted as ‘Strike’, ‘Patrol’, and
‘Look’ areas. In Fig. 11, solid lines are the generated
path of these three agents and small dots are the points
generated by the algorithm. Particularly, Fig. 11(b)
shows the scenario that Agent 1 looks at Target b after
Agent 2 strikes it and Fig. 11(c) shows the scenario

that Agent 1 and Agent 3 strike Object ¢
simultaneously.

7. SUMMARY AND FUTURE WORK

In this paper, we described the hierarchical design

of large-scale multi-agent systems and discussed the
scenario of agent tasking at the cooperative path
planning framework. Based on a pre-designed agent
activity, the path for each agent to follow is then
generated by the CPP algorithm. The constructing
techniques of the algorithm were discussed in detail,
and the integration of algorithm into the CPP
framework was also presented by illustrative
examples. In addition to the spatial constraints, the
incorporation of temporal constraints such as activity
coordination was discussed in this paper. The
advantages of the planning algorithm are two-fold.
First, the computational complexity is reduced from
solving numerical differential equations to dealing
with a set of algebraic equations. Second, the
cooperation, e.g., the designated formation pattern
among dynamical multi-agents, is specified in terms
of the objective function. That is, without modifying
the dynamics of each individual agent, different
cooperative paths can be easily generated. Our future
work will focus on the study of the impact of using
multiple distributed computational modules on the
coordination performance of multi-agent systems, and
compare that of using one centralized module. Also,
the implementation of generating real-time trajectory
on real robotic vehicles is underway.

REFERENCES

[1] D. Fox, W. Burgard, H. Kruppa, and S. Thrun,
“A probabilistic approach to collaborative multi-
robot localization,” Autonomous Robots, vol. &,
no. 3, pp. 325-344, June 2000.

[2] W. Burgard, M. Moors, C. Stachniss, and F. E.
Schneider, “Coordinated multi-robot explora-
tion,” IEEE Trans. Robot., vol. 21, no. 3, pp.
376-386, June 2005.

[3] D. Hougen, S. Benjaafar, J. Bonney, J. Budenske,
M. Dvorak, M. Gini, H. French, D. Krantz, P. Li,
F. Malver, B. Nelson, N. Papanikolopoulos, P.
Rybski, S. Stoeter, R. Voyles, and K. Yesin, “A
miniature robotic system for reconnaissance and
surveillance,” Proc. IEEE Int. Conf. on Robot.
Autom., pp. 501-507, San Francisco, CA, USA,
April 2000.

[4] R. R. Murphy, “Human-robot interaction in
rescue robotics,” [EEE Trans. Syst, Man,
Cybern., C, Appl. Rev., vol. 34, no. 2, pp. 138-
153, May 2004.

[5] J. S. Jennings, G. Whelan, and W. F. Evans,
Cooperative search and rescue with a team of
mobile robots,” Proc. IEEE Int. Conf. Advanced
Robotics, Monterey, CA, USA, pp. 193-200,
July 1997,

{6] P. Varaiya, “Smart cars on smart roads:
Problems of control,” IEEE Trans. on Automatic
Control, vol. 38, no. 2 pp. 195-206, Feb. 1993.

[7] A. Fax and R. M. Murray, “Information flow

412

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

120}

Feng-Li Lian

and cooperative control of vehicle formations,”
IEEE Trans. on Automatic Control, vol. 49, pp.
1465-1476, Sept. 2004.

R. Vidal, O. Shakernia, and §S. Sastry,
“Formation control of nonholonomic mobile
robots omnidirectional visual servoing and
motion segmentation,” Proc. IEEE Conf. Robot.
Autom., pp. 584-589, Taipei, Taiwan, Sep. 2003.
Mixed Initiative Control of Automa-teams
program of DARPA at http://dtsn.darpa.mil/ixo/
mica.asp

A. K. Das, R. Fierro, V. Kumar, J. P. Ostrowski,
J. Spletzer, and C. J. Taylor, “A vision-based
formation control framework,” IEEE Trans.
Robot. Autom., vol. 18, no. 5, pp. 813-825, Oct.
2002.

P. Tabuada, G. J. Pappas, and P. Lima, “Motion
feasibility of multi-agent formations,” I[EEE
Trans. Robot., vol. 21, no. 3, pp. 387-392, June
2005.

T. Balch and R. Arkin, “Behavior-based
formation control for multirobot systems,” IEEE
Trans. Robot. Autom., vol. 14, no. 6, pp. 926-
939, Dec. 1998.

J. Fredslund and M. J. Mataric, “A general
algorithm for robot formations using local
sensing and minimal communication,” IEEE
Trans. Robot. Autom., vol. 18, no. 5, pp. 837-
846, Oct. 2002.

J. R. T. Lawton, R. W, Beard, and B. J. Young,
“A decentralized approach to formation
maneuvers,” IEEE Trans. Robot. Autom., vol. 19,
no. 6, pp. 933-941, Dec. 2003.

H. G. Tanner, G. J. Pappas, and V. Kumar,
“Leader-to-formation stability,” IEEE Trans.
Robot. Autom., vol. 20, no. 3, pp. 443-455, June
2004. |

J. P. Desai, J. P. Ostrowski, and V. Kumar,
“Modeling and control of formations of
nonholonomic mobile robots,” [IEEE Trans.
Robot. Autom., vol. 17, no. 6, pp. 905-908, Dec.
2001.

P. Ogren, M. Egerstedt, and X. Hu, “A control
Lyapunov function approach to multiagent
coordination,” IEEE Trans. Robot. Autom., vol.
18, no. 5, pp. 847-851, Oct. 2001.

S. S. Ge and C.-H. Fua, “Queues and artificial
potential trenches for multirobot formations,”
IEEE Trans. Robot. Autom., vol. 21, no. 4, pp.
646-656, Aug. 2005.

M. B. Milam, K. Mushambi, and R. M. Murray,
“A new computational approach to real-time
trajectory generation for constrained mechanical
systems,” Proc. on IEEE Conf. Decision and
Control, Sydney, Australia, Dec. 2000.

N. Petit, M. B. Milam, and R. M. Murray,
“Inversion based constrained trajectory

optimization,” Proc. IFAC Symp. Nonlinear
Control Systems Design, Saint-Petersburg,
Russia, July 2001.

R. Olfati-Saber, W. B. Dunbar, and R. M.
Murray, “Cooperative control of multi-vehicle
systems using cost graphs and optimization,”
Proc. American Control Conference, Denver,
CO, USA, June 2003.

M. Fliess, J. Levine, P. Martin, and P. Rouchon,
“Flatness and defect of non-linear systems:
Introductory theory and examples,” [nferna-
tional Journal of Control, vol. 61, no. 6, pp.
1327-1360, 1995.

C. de Boor, A Practical Guide to Splines,
Springer-Verlag, 1978.

P. Gill, W. Murray, M. Saunders, and M. Wright,
User’s Guide for NPSOL 5.0: A Fortran
Package for Nonlinear Programming, System
Optimization Laboratory, Stanford University,
California, USA.

H. Choset, K. M. Lynch, S. Hutchinson, G.
Kantor, W. Burgard, L. E. Kavraki, and S. Thrun,
Principles of Robot Motion: Theory, Algorithms,
and Implementations. MIT Press, 2005.

L. Cremean, W. B. Dunbar, D. van Gogh, J.
Hickey, E. Klavins, J. Meltzer, and R. M.
Murray, “The Caltech multi-vehicle wireless
testbed,” Proc. IEEE Conf. Decision and
Control, Las Vegas, NV, USA, pp. 86-88, Dec.
2002.

F.-L. Lian and R. M. Murray, ‘“Real-time
trajectory generation for the cooperative path
planning of multi-vehicle systems,” Proc. IEEE
Conf. Decision and Control, Las Vegas, NV,
USA, pp. 3766-3769, Dec. 2002.

F.-L. Lian and R. M. Murray, “Cooperative task
planning of multi-robot systems with temporal
constraints,” Proc. IEEE Int’l Conf. on Robot.
Autom., Taipei, Taiwan, pp. 2504-2509, Sep.
2003.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

Feng-Li Lian received the B.S. and
M.S. degrees from National Taiwan
University, Taipei, Taiwan, in 1992
and 1994, respectively, and the Ph.D.
degree from the University of
Michigan, Ann Arbor, in 2001. From
2001 to 2002, he was a Postdoctoral
Scholar at California Institute of
Technology. In 2002, he joined the
faculty of the Electrical Engineering Department, National
Taiwan University, where he is currently an Associate
Professor. He is the recipient of the Youth Automatic
Control Engineering Award of the Chinese Automatic
Control Society, Taiwan, in 2007 and the NTU Excellent
Teaching Award in 2007. His current research interests
include distributed and networked control systems, multiple
dynamical agent systems, trajectory generation and path
planning.

