• Title/Summary/Keyword: dynamic moment

Search Result 861, Processing Time 0.03 seconds

Gain-Tuning of Sensory Feedback for a Multi-Fingered Hand Based on Muscle Physiology

  • Bae, J.H.;Arimoto, S.;Shinsuke, N.;Ozawa, R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1994-1999
    • /
    • 2003
  • This paper discusses dynamic characteristics of motion of a pair of multi-degrees of freedom robot fingers executing grasp of a rigid object and controlling its orientation with the aid of rolling contacts. In particular, the discussions are focused on a problem of gain-tuning of sensory feedback signals proposed from the viewpoint of sensorymotor coordination, which consist of a feedforward term, a feedback term for controlling rotational moment of the object, and another term for controlling its rotational angle. It is found through computer simulations of the overall fingersobject dynamics subject to rolling contact constraints that some dynamic characteristics of torque-angular velocity relation may play an important role likely as reported by experimental results in muscle physiology and therefore selection of damping gains in angular velocity feedback depending on the guess of object mass is crucial. Finally, a guidance of gain-tuning in each feedback term is suggested and its validity is discussed by various computer simulations.

  • PDF

A review on numerical models and controllers for biped locomotion over leveled and uneven terrains

  • Varma, Navaneeth;Jolly, K.G.;Suresh, K.S.
    • Advances in robotics research
    • /
    • v.2 no.2
    • /
    • pp.151-159
    • /
    • 2018
  • The evolution of bipedal robots was the foundation stone for development of Humanoid robots. The highly complex and non-linear dynamic of human walking made it very difficult for researchers to simulate the gait patterns under different conditions. Simple controllers were developed initially using basic mechanics like Linear Inverted Pendulum (LIP) model and later on advanced into complex control systems with dynamic stability with the help of high accuracy feedback systems and efficient real-time optimization algorithms. This paper illustrates a number of significant mathematical models and controllers developed so far in the field of bipeds and humanoids. The key facts and ideas are extracted and categorized in order to describe it in a comprehensible structure.

An Investigation about Dynamic Behavior of Three Point Bending Specimen

  • Cho, Jae-Ung;Han, Moon-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.149-157
    • /
    • 2000
  • Computer simulations of the mechanical behavior of a three point bend specimen with a quarter notch under impact load are performed. The case with a load application point at the side is considered. An elastic-plastic von Mises material model is chosen. Three phases such as impact bouncing and bending phases are found to be identified during the period from the moment of impact to the estimated time for crack initiation. It is clearly shown that no plastic deformation near the crack tip is appeared at the impact phase. However it is confirmed that the plastic zone near the crack tip emerges in the second phase and the plastic hinge has been formed in the third phase. Gap opening displacement crack tip opening displacement and strain rate are compared with rate dependent material(visco-plastic material). The stability during various dynamic load can be seen by using the simulation of this study.

  • PDF

A sequential pattern analysis for dynamic discovery of customers' preference (고객의 동적 선호 탐색을 위한 순차패턴 분석 : (주)더페이스샵 사례)

  • Song, Ki-Ryong;Noh, Soeng-Ho;Lee, Jae-Kwang;Choi, Il-Young;Kim, Jae-Kyeong
    • 한국경영정보학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.153-170
    • /
    • 2008
  • Customers' needs change every moment. Profitability of stores can't be increased anymore with an existing standardized chain store management. Accordingly, a personalized store management tool needs through prediction of customers' preference. In this study, we propose a recommending procedure using dynamic customers' preference by analyzing the transaction database. We utilize self-organizing map algorithm and association rule mining which are applied to cluster the chain stores and explore purchase sequence of customers. We demonstrate that the proposed methodology makes an effect on recommendation of products in the market which is characterized by a fast fashion and a short product life cycle.

  • PDF

A Study on the Analysis of Volatile Flavour of Kimchee (김치 휘발성 향기성분의 분석 방법에 관한 연구)

  • Hawer, Wooderck S.
    • Analytical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.125-132
    • /
    • 1994
  • Flavours in kimchee are the result of unique combination of various sugars, organic acids and amino acids as well as various volatile organic compounds including sulfur-containing compounds, terpenes, alcohols, and some volatile organic acids. In the experiment for the flavour extracting methods, dynamic headspace(DHS) is more effective for collection of volatile flavour than simultaneous distillation extraction(SDE). The best polarity available at the moment is 5% phenyl methyl poly-siloxane which will separate non-polar, intermediate and polar components with good resolution.

  • PDF

Analysis of dynamic characteristics for an automotive V-belt CVT by bondgraph modeling method (본드선도기법을 이용한 차량용 V-벨트 CVT의 동특성 해석)

  • 장성식;김현수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.68-79
    • /
    • 1989
  • Dynamic characteristics for an automotive V-belt CVT with centrifugal and torque-ramp actuators was investigated by bondgraph modeling method. Ten(10) state space equations for the V-belt CVT were developed from the constructed bondgraph model and linearized for perturbation at steady state. As simulation results, speed ratio versus time curves were obtained. It was found that as the ratio of the moment of inertia of the pulleys increased, the stability of the V-belt CVT system decreased. Change in the ratio of the spring constants caused the magnitude of the change of the speed ratio, but had little effect on the settling time of the system became faster and the stability of the system improved. However, the sensitivity of the speed ratio decreased with the increasing .betha.

  • PDF

Structural Vibration Analysis of a Large Two-Stroke Engine and Foundation System for Stationary Power Plants (발전용 대형 2 행정 디젤 엔진 및 기초의 구조 진동해석)

  • 박종포;신언탁
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.493-499
    • /
    • 2000
  • Structural vibration analysis of the stationary power plant system employing a large two-stroke low speed diesel engine is performed to verify that the vibration characteristics of the system meet design requirements, The system consists of the diesel engine generator and concrete foundation including pile and soil. The system is modeled in the form of a mass-elastic system of 5 degrees of freedom for vibration analysis. Excitation moments and dynamic parameters including engine body stiffness soil stiffness and damping are identified for the analysis, Results of structural vibration analysis of the system are presented and compared with measurements in this paper.

  • PDF

A Study on the Development of the Gear Profile Design Program (기어 치형 설계 프로그램 개발에 관한 연구)

  • Jung, Sung-Pil;Park, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.104-111
    • /
    • 2009
  • In this paper, the gear design program is presented. The profile of gears is created using classical mathematic formulations. In each gear, a kinematic joint is applied and one can define the 20 contact condition between gear pairs. Initial and boundary conditions such as force, torque, velocity, acceleration, etc. can be set. Thus, it is possible to analyze dynamic characteristics of gear pairs such as reaction moment and the variation of angular velocity. In order to find the optimal profile of gear pairs, two optimization methods based on design of experiments are inserted in the program; One is the Taguchi method and the other is the response surface analysis method. To verify the program, the rack & pinion gear is created and analyzed. Simulation results show that the developed program is useful and result data is reliable.

Experimental Study on Modifiable Walking Pattern Generation for Handling Infeasible Navigational Commands

  • Hong, Young-Dae;Lee, Bumjoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2368-2375
    • /
    • 2015
  • To accommodate various navigational commands, a humanoid should be able to change its walking motion in real time. Using the modifiable walking pattern generation (MWPG) algorithm, a humanoid can handle dynamic walking commands by changing its walking period, step length, and direction independently. If the humanoid is given a command to perform an infeasible movement, the algorithm substitutes the infeasible command with a feasible one using binary search. The feasible navigational command is subsequently translated into the desired center-of-mass (CM) state. Every sample time CM reference is generated using a zero-moment-point (ZMP) variation scheme. Based on this algorithm, various complex walking patterns can be generated, including backward and sideways walking, without detailed consideration of the feasibility of the navigational commands. In a previous study, the effectiveness of the MWPG algorithm was verified by dynamic simulation. This paper presents experimental results obtained using the small-sized humanoid robot platform DARwIn-OP.

Tracking Control for Biped Robot (이족 보행 로봇을 위한 추적 제어)

  • 이용권;박종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.315-318
    • /
    • 1995
  • In this paper, an optimal trunk trajectory for stable walking of biped robots is expressed as a simple differential equation, which is then solved by numerical methods. We used ZMP (Zero Moment Point), the virtual total ground reaction point within the region of the supporting food, as the criterion of stability of biped robot walking. If the ZMP is located outside of the stable region in dynamic walking, biped robots fall down. The biped robot considered in this paper consists of two legs and a trunk. The trajectories of the two legs and the ZMP of the biped robot are determined such that they are similar ti those of a human. Based upon those trajectories, the trunk trajectory is solved by numerically integrating differential dynamic equations. Leg motions are controlled by the computed torque control method. The effectiveness of control algorithm as well as the trajectories is confirmed by computer simulations.

  • PDF