• Title/Summary/Keyword: dynamic material properties

Search Result 834, Processing Time 0.024 seconds

Dynamic Analysis of Francis Runners - Experiment and Numerical Simulation

  • Lais, Stefan;Liang, Quanwei;Henggeler, Urs;Weiss, Thomas;Escaler, Xavier;Egusquiza, Eduard
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.303-314
    • /
    • 2009
  • The present paper shows the results of numerical and experimental modal analyses of Francis runners, which were executed in air and in still water. In its first part this paper is focused on the numerical prediction of the model parameters by means of FEM and the validation of the FEM method. Influences of different geometries on modal parameters and frequency reduction ratio (FRR), which is the ratio of the natural frequencies in water and the corresponding natural frequencies in air, are investigated for two different runners, one prototype and one model runner. The results of the analyses indicate very good agreement between experiment and simulation. Particularly the frequency reduction ratios derived from simulation are found to agree very well with the values derived from experiment. In order to identify sensitivity of the structural properties several parameters such as material properties, different model scale and different hub geometries are numerically investigated. In its second part, a harmonic response analysis is shown for a Francis runner by applying the time dependent pressure distribution resulting from an unsteady CFD simulation to the mechanical structure. Thus, the data gained by modern CFD simulation are being fully utilized for the structural design based on life time analysis. With this new approach a more precise prediction of turbine loading and its effect on turbine life cycle is possible allowing better turbine designs to be developed.

Density and Strength Properties of Lightweight Composites with replacement ratio of Paper Ash (제지애시의 치환율에 따른 경량 경화체의 밀도 및 강도특성)

  • Lee, Seung-Ho;Choi, Se-Jin;Park, Sun-Gyu;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.164-165
    • /
    • 2015
  • Recently, the reason of using foamed concrete is for core of panel, filler of construction material to give lightness. However, cement causes environmental problem. The cement generates CO2 but we normally use cement during manufacturing foamed concrete. Accordingly, this study focuses on dynamic properties of matrix according to the addition ratio of paper ash to make lightweight matrix with blast furnace slag and paper ash which are industrial by-product. The experiment progessed in order to select th optimum mixing ratio of the blast furnace slag and paper ash. There are totally 7 levels such as B100:P0, B95:P5, B90:P10, B85:P15, B80:P20, B75:P25, B70:P30 in this study. As a result of the test, B95:P5 matrix has the best density and compressive strength.

  • PDF

Microstructural, Dielectric and Electrical Properties of(Pb,La,Ce)TiO3 Ceramics for High Frequency Ceramic Resonator as a function of MnO2 Addition

  • Yoo, Ju-Hyung;Oh, Dong-On;Park, Chang-Yub;Kim, Ji-Hong;Lee, Sung-Ill;Ryu, Sung-Lim
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.3
    • /
    • pp.25-28
    • /
    • 2002
  • In this study, microstructural, dielectric and electrical properties of (Pb$\sub$0.83/) (La$\sub$0.2/Ce$\sub$0.8/)$\sub$0.08/TiO$_3$(PCT) ceramics as a function of MnO$_2$ addition and electrode size variation were investigated for 30 MHz high frequency ceramic resonator application. Grain size was gradually increased according to the increase of MnO$_2$ addition amount. Moreover, the density showed a constant value with increasing MnO$_2$ addition amount. Dielectric constant was decreased with increasing MnO$_2$ addition amount. Curie temperature of all the composition ceramics was nearly constant around 330$^{\circ}C$. The maximum D.R.of 50.5 dB and maximum Q$\sub$mt3/ of 1842 in the 3$\^$rd/ overtone vibration mode were appeared at the composition of 0.3wt% MnO$_2$, respectively.

Fabrication and Characterization of Superhydrophobic Glass Surfaces Using Silicon Micro-mold and Thermal-reflow Process (실리콘 마이크로 몰드와 유리의 열-재흐름 현상을 이용한 초소수성 유리 표면 제작 및 젖음 특성 평가)

  • Kim, Seung-Jun;Kong, Jeong-Ho;Lee, Dongyun;Kim, Jong-Man
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.8
    • /
    • pp.591-597
    • /
    • 2012
  • This paper presents regularly micro-textured glass surfaces ensuring the superhydrophobic properties in the Cassie-Baxter regime. The proposed surfaces were fabricated simply and efficiently by filling the glass material into a silicon micro-mold with periodic micro-cavities based on a thermal-reflow process, resulting in a successful demonstration of the textured glass surface with periodically-arrayed micro-pillar structures. The static and dynamic wetting properties of the micro-textured glass surfaces were characterized by measuring the static contact angle (SCA) and contact angle hysteresis (CAH), respectively. In addition, the surface wettability was estimated theoretically based on Wenzel and Cassie-Baxter wetting theories, and compared with the experimental ones. Through the experimental and theoretical observations, it was clearly confirmed that the proposed micro-textured glass surfaces showed the slippery superhydrophobic behaviors in the Cassie-Baxter wetting mode.

Dependence of Na+ leakage on intrinsic properties of cation exchange resin in simulated secondary environment for nuclear power plants

  • Hyun Kyoung Ahn;Chi Hyun An;Byung Gi Park;In Hyoung Rhee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.640-647
    • /
    • 2023
  • Material corrosion in nuclear power plant (NPP) is not controlled only by amine injection but also by ion exchange (IX) which is the best option to remove trace Na+. This study was conducted to understand the Na+ leakage characteristics of IX beds packed with ethanolamine-form (ETAH-form) and hydrogen-form (H-form) resins in the simulated water-steam cycle in terms of intrinsic behaviors of four kinds of cation-exchange resins through ASTM test and Vanselow mass action modeling. Na+ was inappreciably escaped throughout the channel created in resin layer. Na+ leakage from IX bed was non-linearly raised because of its decreasing selectivity with increasing Na+ capture and with increasing the fraction of ETAH-form resin. Na+ did not reach the breakthrough earlier than ETAH+ and NH4+ due to the increased selectivity of Na+ to the cation-exchange resin (H+ < ETAH+ < NH4+ ≪ Na+) at the feed composition. Na+ leakage from the resin bed filled with small particles was decreased due to the enhanced dynamic IX processes, regardless of its low selectivity. Thus, the particle size is a predominant factor among intrinsic properties of IX resin to reduce Na+ leakage from the condensate polishing plant (CPP) in NPPs.

Nanocomposite reinforced structures to deal with injury in physical sports

  • Guojiao Wang;Kun Peng;Hui Zhou;Guangyao Liu;Zhiguo Lou;Feng Pan
    • Advances in nano research
    • /
    • v.14 no.6
    • /
    • pp.541-555
    • /
    • 2023
  • The extensive use of polymeric matrix composites in the athletic sector may be attributed to its high strength-to-weight ratio, production economy, and a longer lifespan than conventional materials. This study explored the impact of carbon nanotubes on the properties of different composite field sports equipment components. The test specimens were fabricated using the compression molding technique. The insertion of carbon nanotubes increases mechanical properties related to the process parameters to account for an improvement in the stick sections' overall performance. The dynamic response of functionally graded reinforced nanocomposite wire structure is examined in this paper on the bases of high-order hyperbolic beam theory lined to the size-dependent nonclassical nonlocal theory under the external mechanical load due to the physical activities. Finally, the impact of different parameters on the stability of nanocomposite structures is discussed in detail.

Application of computer methods in music composition using smart nanobeams

  • Ying Shi;Maryam Shokravi;X. Chen
    • Advances in nano research
    • /
    • v.17 no.3
    • /
    • pp.285-291
    • /
    • 2024
  • The paper considers one of the new applications of computer methods in music composition, using smart nanobeams-an integration of advanced computational techniques with new, specially designed materials for enhanced performance capabilities in music composition. The research applies some peculiar properties of smart nanobeams, embedded with piezoelectric materials that modulate and control sound vibrations in real-time. The study is conducted to determine the effects of changes in the length, thickness of nanobeams and the applied voltage on acoustical properties and the tone quality of musical instruments with the help of numerical simulations and optimization algorithms. By means of piezo-elasticity theory, different governing equations of nanobeam systems can be derived, which are solved by the numerical method to predict the dynamic behavior of the system under different conditions. Results show that manipulation of the parameters allows great control over pitch, timbre, and resonance of the instrument; such a system offers new ways in which composers and performers can create music. This research also validates the computational model against available theoretical data, proving the accuracy and possible applications of the former. The work thus marks a large step towards the intersection of music composition with smart material technology, and, when further developed, it would mean that smart nanobeams could revolutionize the process for composing and performing music on these instruments.

Measurement of Fluid Dynamic Characteristics around Stenotic Obstruction in a Circular Channel

  • An, Jin-Hyo;Cheema, T.A.;Jeong, Seong-Ryong;Lee, Choon-Young;Kim, Gyu-Man;Park, Cheol-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.921-929
    • /
    • 2011
  • We measured experimentally the properties of fluid dynamics, velocity fields, and the pressure, around stenotic obstruction located inside a circular channel structure. Particle image velocimetry system was employed to obtain velocity fields at the central section of the circular channel in the streamwise direction. The stenosis model used was made of acrylic material with different stenotic aspect ratios. The working fluid was water and it was returned by a centrifugal pump system. Pressure measurements were carried out to validate the effect of a narrow passageway. Results showed that the acceleration of gap flow through stenotic obstruction and the pressure drop in the recirculation regime behind the stenosis model can be observed.

AE Characteristics affecting the Notch Effect of the Cold Steel SKD11 (냉간강재(冷間鋼材) SKD11의 Notch효과(效果)가 AE특성(特性)에 미치는 영향(影響))

  • Han, Eung-Kyo;Kim, Ki-Choong;Kwon, Dong-Ho;Kim, Jae-Yeor
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.6 no.1
    • /
    • pp.9-22
    • /
    • 1986
  • Acoustic Emission is not only expected as a non-destructive evaluation technique in practice but also noted as a new powerful means of evaluation of materials. AE occurs with plastic deformation and propagation of crack, and this patterns of occurence of AE vary with materials. AE which comes from propagation of crack depends oil the shapes and properties of materials. Like this AE has characteristic of material. The present work is an attempt to evaluate characteristics of carbon steel (SM55C) and Die steel(SKD11) by means of dynamic response of AE method.

  • PDF

A Study on the Evaluation of Mechanical Behavior of Golf Shafts (골프 샤프트의 역학적 거동 평가에 관한 연구)

  • 정성교;윤형택;정성균;임승규
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.44-47
    • /
    • 2002
  • A liner static and dynamic analysis for a golf shaft, which is made of carbon fiber reinforced composite materials, is presented in this study. Major mechanical parameters of golf shafts such as deflection, torsional angel, frequency of vibration(CPM), and kick point are analyzed by finite element method. The effects of major parameters on the performance of golf shafts are also discussed. The results show that the major parameters of golf shafts are strongly dependent on the material properties of fibers and design pattern of golf shafts. The present results will be useful to design sheet-rolled golf shafts.

  • PDF